Difference between revisions of "Savegames"
Moosehunter (talk | contribs) (Core file system) |
Moosehunter (talk | contribs) m |
||
Line 1: | Line 1: | ||
This page describes the format of save files contained in NAND. These files are stored as completely unencrypted, plaintext data. Save files are not cleared upon creation, resulting in possible garbage data in unused portions of the container. | This page describes the format of save files contained in NAND. These files are stored as completely unencrypted, plaintext data. Save files are not cleared upon creation, resulting in possible garbage data in unused portions of the container. | ||
− | + | = Main header = | |
The header is 0x4000 bytes long. | The header is 0x4000 bytes long. | ||
Line 66: | Line 66: | ||
The additional storage at the end of the header is used to store any extra header data. This data's structure is determined by offsets stored in the main part of the header. | The additional storage at the end of the header is used to store any extra header data. This data's structure is determined by offsets stored in the main part of the header. | ||
− | + | == AES CMAC header == | |
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 84: | Line 84: | ||
The final CMAC key used for this is generated using GenerateAesKek with a kek source and the device key, along with and LoadAesKey and a set key seed. | The final CMAC key used for this is generated using GenerateAesKek with a kek source and the device key, along with and LoadAesKey and a set key seed. | ||
− | + | == DISF == | |
This section contains information about the structure of the save file. | This section contains information about the structure of the save file. | ||
Line 291: | Line 291: | ||
|} | |} | ||
− | + | == Integrity verification header == | |
* Offsets for levels 1-3 come from the metadata remap storage | * Offsets for levels 1-3 come from the metadata remap storage | ||
Line 329: | Line 329: | ||
|} | |} | ||
− | + | === Level information === | |
* 0x18 bytes long | * 0x18 bytes long | ||
Line 358: | Line 358: | ||
|} | |} | ||
− | + | == Journal header == | |
{| class="wikitable" | {| class="wikitable" | ||
Line 396: | Line 396: | ||
|} | |} | ||
− | + | === Journal map header === | |
{| class="wikitable" | {| class="wikitable" | ||
Line 422: | Line 422: | ||
|} | |} | ||
− | + | == Extra data == | |
{| class="wikitable" | {| class="wikitable" | ||
Line 467: | Line 467: | ||
|} | |} | ||
− | + | = Remap Storage = | |
Remap Storage is used to remap segments of data from virtual offsets to physical offsets. This allows extending the save file without having to relocate existing data. | Remap Storage is used to remap segments of data from virtual offsets to physical offsets. This allows extending the save file without having to relocate existing data. | ||
Line 483: | Line 483: | ||
Segment index: 0x3 Offset: 0x000000000000100 | Segment index: 0x3 Offset: 0x000000000000100 | ||
− | + | == Remap storage header == | |
{| class="wikitable" | {| class="wikitable" | ||
Line 516: | Line 516: | ||
|} | |} | ||
− | + | == Remapping Entry == | |
{| class="wikitable" | {| class="wikitable" | ||
Line 546: | Line 546: | ||
|} | |} | ||
− | + | = Duplex Storage = | |
A Duplex Storage contains four separate elements: [[#Duplex header|a header]], a bitmap, and two identically-sized chunks of data. | A Duplex Storage contains four separate elements: [[#Duplex header|a header]], a bitmap, and two identically-sized chunks of data. | ||
Line 552: | Line 552: | ||
As hinted by the name, a Duplex Storage contains two main chunks of data. To store X bytes, two chunks of data each with size X are required. | As hinted by the name, a Duplex Storage contains two main chunks of data. To store X bytes, two chunks of data each with size X are required. | ||
− | + | == Bitmap == | |
This main data storage is split into blocks of the size indicated in the duplex header. The bitmap contains as many bits as the main data has blocks. If the main data is 0x40000 bytes long with a block size of 0x4000 bytes, the bitmap would contain 0x10 bits. | This main data storage is split into blocks of the size indicated in the duplex header. The bitmap contains as many bits as the main data has blocks. If the main data is 0x40000 bytes long with a block size of 0x4000 bytes, the bitmap would contain 0x10 bits. | ||
Line 558: | Line 558: | ||
The bitmap controls which data chunk is active for each block. e.g. If bit 3 of the bitmap is a 0 then block 3 of data chunk 0 is active and block 3 of data chunk 1 is inactive. This means that when data from block 3 is read, the data from chunk 0 will be returned and the data from chunk 1 will be completely ignored. | The bitmap controls which data chunk is active for each block. e.g. If bit 3 of the bitmap is a 0 then block 3 of data chunk 0 is active and block 3 of data chunk 1 is inactive. This means that when data from block 3 is read, the data from chunk 0 will be returned and the data from chunk 1 will be completely ignored. | ||
− | + | == Hierarchical Duplex Storage == | |
Multiple Duplex Storages can be chained together to gain various benefits. With a Hierarchical Duplex Storage, the bitmap for the main data is stored inside another Duplex Storage. | Multiple Duplex Storages can be chained together to gain various benefits. With a Hierarchical Duplex Storage, the bitmap for the main data is stored inside another Duplex Storage. | ||
Line 566: | Line 566: | ||
This allows for atomic operations on the Hierarchical Duplex Storage. When writing to the storage, data will be written to the inactive blocks and inactive bitmaps. When the data is committed the bit in the save file header is flipped, changing which master bitmap is active. | This allows for atomic operations on the Hierarchical Duplex Storage. When writing to the storage, data will be written to the inactive blocks and inactive bitmaps. When the data is committed the bit in the save file header is flipped, changing which master bitmap is active. | ||
− | + | == Duplex header == | |
* Block sizes are stored as powers of 2 | * Block sizes are stored as powers of 2 | ||
Line 622: | Line 622: | ||
|} | |} | ||
− | + | = Save FS = | |
− | + | == Save FS header == | |
* Structure is different than 3DS. | * Structure is different than 3DS. | ||
Line 656: | Line 656: | ||
|} | |} | ||
− | + | == File allocation table header == | |
{| class="wikitable" | {| class="wikitable" | ||
Line 702: | Line 702: | ||
|} | |} | ||
− | + | == Save File Table == | |
The save file table is similar to the RomFS file table, except the save file table uses linked lists instead of dictionaries. | The save file table is similar to the RomFS file table, except the save file table uses linked lists instead of dictionaries. | ||
Line 710: | Line 710: | ||
'''SaveFsList<SaveFileTableEntry<SaveFileInfo>>''' | '''SaveFsList<SaveFileTableEntry<SaveFileInfo>>''' | ||
− | + | === Save File Table Entry === | |
SaveFileTableEntry<class T> | SaveFileTableEntry<class T> | ||
Line 730: | Line 730: | ||
|} | |} | ||
− | + | === Save File Info === | |
Holds the information of a single file. | Holds the information of a single file. | ||
Line 754: | Line 754: | ||
|} | |} | ||
− | + | === Save Directory Info === | |
Holds the information of a single directory. | Holds the information of a single directory. | ||
Line 778: | Line 778: | ||
|} | |} | ||
− | + | == Save FS List == | |
SaveFsList<class T> | SaveFsList<class T> | ||
Line 806: | Line 806: | ||
|} | |} | ||
− | + | === Save FS List Key === | |
{| class="wikitable" | {| class="wikitable" | ||
Line 824: | Line 824: | ||
|} | |} | ||
− | + | === Save FS List Entry === | |
{| class="wikitable" | {| class="wikitable" |
Revision as of 21:49, 31 March 2019
This page describes the format of save files contained in NAND. These files are stored as completely unencrypted, plaintext data. Save files are not cleared upon creation, resulting in possible garbage data in unused portions of the container.
Main header
The header is 0x4000 bytes long.
There are 2 headers stored at 0x0 and 0x4000, presumably for commit and rollback purposes.
Decimal versions are separated as Major, Minor, Micro, and Bugfix with each using one byte. e.g. version 3.4.5.6 would be 0x03040506.
Image offset | Length | Description |
---|---|---|
0x000 | 0x100 | AES-CMAC header |
0x100 | 0x200 | DISF header |
0x300 | 0x44 | Duplex header |
0x344 | 0xC4 | Integrity verification header |
0x408 | 0x200 | Journal header |
0x608 | 0x48 | Save header |
0x650 | 0x40 | Main data remap header |
0x690 | 0x40 | Meta data remap header |
0x6D0 | 0x8 | Unknown |
0x6D8 | 0x200 | Extra data A |
0x8D8 | 0x200 | Extra data B |
0xAD8 | 0x3528 | Additional storage |
The additional storage at the end of the header is used to store any extra header data. This data's structure is determined by offsets stored in the main part of the header.
AES CMAC header
Image offset | Length | Description |
---|---|---|
0x00 | 0x10 | AES-CMAC over DISF header (size 0x200) |
0x10 | 0xF0 | Zero padding |
The final CMAC key used for this is generated using GenerateAesKek with a kek source and the device key, along with and LoadAesKey and a set key seed.
DISF
This section contains information about the structure of the save file.
Start | Length | Description |
---|---|---|
0x000 | 4 | Magic ("DISF") |
0x004 | 4 | Version (Major version must be 4 or 5. Only system version 5.0.0+ can read version 5 save files) |
0x008 | 32 | Hash of start of DPFS to end of 0x4000 block (0x300-0x3FFF) |
0x028 | 8 | Main data remap mapping table offset |
0x030 | 8 | Main data remap mapping table size |
0x038 | 8 | Meta data remap mapping table offset |
0x040 | 8 | Meta data remap mapping table size |
0x048 | 8 | Main data remap offset |
0x050 | 8 | Main data remap size |
0x058 | 8 | Duplex level 1 virtual offset A |
0x060 | 8 | Duplex level 1 virtual offset B |
0x068 | 8 | Duplex level 1 size |
0x070 | 8 | Duplex level 2 virtual offset A |
0x078 | 8 | Duplex level 2 virtual offset B |
0x080 | 8 | Duplex level 2 size |
0x088 | 8 | Journal storage virtual offset |
0x090 | 8 | Journal storage data size A |
0x098 | 8 | Journal storage data size B |
0x0A0 | 8 | Journal storage journal size |
0x0A8 | 8 | Duplex master bitmap offset A |
0x0B0 | 8 | Duplex master bitmap offset B |
0x0B8 | 8 | Duplex master bitmap size |
0x0C0 | 8 | IVFC master hash offset A |
0x0C8 | 8 | IVFC master hash offset B |
0x0D0 | 8 | IVFC master hash size |
0x0D8 | 8 | Journal block table virtual offset |
0x0E0 | 8 | Journal block table size |
0x0E8 | 8 | Virtual offset of bitmap of modified physical journal blocks |
0x0F0 | 8 | Size of bitmap of modified physical journal blocks |
0x0F8 | 8 | Virtual offset of bitmap of modified virtual journal blocks |
0x100 | 8 | Size of bitmap of modified virtual journal blocks |
0x108 | 8 | Virtual offset of bitmap of free journal blocks |
0x110 | 8 | Size of bitmap of free journal blocks |
0x118 | 8 | IVFC level 1 virtual offset |
0x120 | 8 | IVFC level 1 size |
0x128 | 8 | IVFC level 2 virtual offset |
0x130 | 8 | IVFC level 2 size |
0x138 | 8 | IVFC level 3 virtual offset |
0x140 | 8 | IVFC level 3 size |
0x148 | 8 | File allocation table virtual offset |
0x150 | 8 | File allocation table size |
0x158 | 1 | Index of the active duplex master bitmap |
0x160 | 8 | [5.0.0+] File allocation table IVFC master hash offset A |
0x168 | 8 | [5.0.0+] File allocation table IVFC master hash offset B |
0x170 | 8 | [5.0.0+] File allocation table IVFC level 1 virtual offset |
0x178 | 8 | [5.0.0+] File allocation table IVFC level 1 size |
0x180 | 8 | [5.0.0+] File allocation table IVFC level 2 virtual offset |
0x188 | 8 | [5.0.0+] File allocation table IVFC level 2 size |
0x200 | End |
Integrity verification header
- Offsets for levels 1-3 come from the metadata remap storage
- Offsets for level 4 comes from the main data remap storage
- This is the same header used in NCA files
Start | Length | Description |
---|---|---|
0x00 | 4 | Magic ("IVFC") |
0x04 | 4 | Version (0.2.x.x) |
0x08 | 4 | Master hash size |
0xC | 4 | Number of levels (Unused in save files) |
0x10 | 0x18*6 | Level information for up to 6 levels |
0xA0 | 32 | Salt seed |
Level information
- 0x18 bytes long
- Block sizes are stored as powers of 2
Start | Length | Description |
---|---|---|
0x00 | 8 | Offset |
0x08 | 8 | Size |
0x10 | 4 | Block size power |
0x14 | 4 | Reserved |
Journal header
Start | Length | Description |
---|---|---|
0x00 | 4 | Magic ("JNGL") |
0x04 | 4 | Version (Must be 0.0.x.x or 0.1.0.0) |
0x08 | 8 | Total size (Incl. journal) |
0x10 | 8 | Journal size |
0x18 | 8 | Block size |
0x20 | 16 | Journal map header |
0x200 | End |
Journal map header
Start | Length | Description |
---|---|---|
0x00 | 4 | Version (Stored as a normal 32-bit integer. Must be 0 or 1) |
0x04 | 4 | Main data block count |
0x08 | 4 | Journal block count |
0x0C | 4 | Padding |
Extra data
Start | Length | Description |
---|---|---|
0x00 | 0x40 | Save Struct |
0x40 | 8 | Save owner ID |
0x48 | 8 | Timestamp |
0x50 | 4 | Flags? |
0x54 | 4 | Unused? |
0x58 | 8 | Size of usable save data |
0x60 | 8 | Journal size |
0x68 | 8 | Commit ID |
0x200 | End |
Remap Storage
Remap Storage is used to remap segments of data from virtual offsets to physical offsets. This allows extending the save file without having to relocate existing data.
Each Remap Storage has three components: a header, a remapping table, and the main data storage.
A remap storage can contain a varying number of segments, each representing a chunk of contiguous virtual storage. A segment can be composed of one or more entries. Each of these entries are mapped from their virtual locations to their physical locations by entries in the remapping table. A physical offset corresponds to that offset in the main data storage.
When a segment is extended a new remapping entry is appended to the physical storage, allowing expansion without relocating the existing entries.
Each virtual offset has two parts, a segment index and an offset. The size of these sections is controlled by the remap header.
Example: 0x3000000000000100
If 4 bits were reserved for the segment index, the offset would be split like this, representing offset 0x100 of segment 3.
Segment index: 0x3 Offset: 0x000000000000100
Remap storage header
Start | Length | Description |
---|---|---|
0x00 | 4 | Magic ("RMAP") |
0x04 | 4 | Version (Must be 0.0.x.x or 0.1.x.x) |
0x08 | 4 | Number of remapping entries |
0x0C | 4 | Number of remapping segments |
0x10 | 4 | Number of bits reserved for the segment index in virtual offsets |
0x40 | End |
Remapping Entry
Start | Length | Description |
---|---|---|
0x00 | 8 | Virtual offset |
0x08 | 8 | Physical offset |
0x10 | 8 | Size |
0x18 | 4 | Alignment |
0x1c | 4 | Padding? |
Duplex Storage
A Duplex Storage contains four separate elements: a header, a bitmap, and two identically-sized chunks of data.
As hinted by the name, a Duplex Storage contains two main chunks of data. To store X bytes, two chunks of data each with size X are required.
Bitmap
This main data storage is split into blocks of the size indicated in the duplex header. The bitmap contains as many bits as the main data has blocks. If the main data is 0x40000 bytes long with a block size of 0x4000 bytes, the bitmap would contain 0x10 bits.
The bitmap controls which data chunk is active for each block. e.g. If bit 3 of the bitmap is a 0 then block 3 of data chunk 0 is active and block 3 of data chunk 1 is inactive. This means that when data from block 3 is read, the data from chunk 0 will be returned and the data from chunk 1 will be completely ignored.
Hierarchical Duplex Storage
Multiple Duplex Storages can be chained together to gain various benefits. With a Hierarchical Duplex Storage, the bitmap for the main data is stored inside another Duplex Storage.
The bitmap for this second Duplex Storage is stored in a special Duplex Storage. The data of this top level contains a master bitmap that is typically 0x40 bytes long. A bit in the save file header controls which master bitmap is active.
This allows for atomic operations on the Hierarchical Duplex Storage. When writing to the storage, data will be written to the inactive blocks and inactive bitmaps. When the data is committed the bit in the save file header is flipped, changing which master bitmap is active.
Duplex header
- Block sizes are stored as powers of 2
Start | Length | Description |
---|---|---|
0x00 | 4 | Magic ("DPFS") |
0x04 | 4 | Version (0.1.x.x) |
0x08 | 8 | Master bitmap offset |
0x10 | 8 | Master bitmap size |
0x18 | 4 | Master bitmap block size power |
0x1C | 8 | Level 1 offset |
0x24 | 8 | Level 1 size |
0x2C | 4 | Level 1 block size power |
0x30 | 8 | Level 2 offset |
0x38 | 8 | Level 2 size |
0x40 | 4 | Level 2 block size power |
Save FS
Save FS header
- Structure is different than 3DS.
Start | Length | Description |
---|---|---|
0x00 | 4 | Magic ("SAVE") |
0x04 | 4 | Version (0.6.x.x) |
0x08 | 8 | Number of blocks. Does not change if save file is resized. |
0x10 | 8 | Block Size |
0x18 | 0x30 | FAT header |
File allocation table header
Start | Length | Description |
---|---|---|
0x00 | 8 | Block size |
0x08 | 8 | FAT offset |
0x10 | 4 | FAT entry count |
0x14 | 4 | Padding |
0x18 | 8 | Data offset |
0x20 | 4 | Data block count |
0x24 | 4 | Padding |
0x28 | 4 | Directory table block index |
0x2C | 4 | File table block index |
Save File Table
The save file table is similar to the RomFS file table, except the save file table uses linked lists instead of dictionaries.
The table contains a list of directory entries and a list of file entries. Their respective types are:
SaveFsList<SaveFileTableEntry<SaveDirectoryInfo>>
SaveFsList<SaveFileTableEntry<SaveFileInfo>>
Save File Table Entry
SaveFileTableEntry<class T>
Start | Length | Description |
---|---|---|
0x00 | 4 | Next entry index. A value of 0 indicates the end of the list. |
0x04 | sizeof(T) | Value of type T. |
Save File Info
Holds the information of a single file.
Start | Length | Description |
---|---|---|
0x00 | 4 | Starting block index. |
0x04 | 8 | File length in bytes. |
0x0C | 8 | Reserved. |
Save Directory Info
Holds the information of a single directory.
Start | Length | Description |
---|---|---|
0x00 | 4 | First child directory index. 0 if none. |
0x04 | 4 | First child file index. 0 if none. |
0x08 | 0xC | Reserved. |
Save FS List
SaveFsList<class T>
This is a linked list that is used internally by Save File Table as a key-value store. Integer/string pairs are used as keys. The list is represented as a single array so that it can be easily stored and read from a file. Entry indexes 0 and 1 are reserved.
Index 0 is the start of a list containing all free entries. When an item in the list is removed, the entry it was using is added to this list for future reuse.
Index 1 is the start of a list containing all currently used entries.
The first 8 bytes of the list are used as follows. Indexes 0 and 1 are included in these counts.
Start | Length | Description |
---|---|---|
0x00 | 4 | The size of the list. Freed entries that have not been reused are included in the count. |
0x04 | 4 | The current capacity of the list based on the number of bytes allocated. |
Save FS List Key
Start | Length | Description |
---|---|---|
0x00 | 4 | 32-bit integer. |
0x04 | 0x40 | 0x40-byte string. |
Save FS List Entry
Start | Length | Description |
---|---|---|
0x00 | 0x44 | Key. |
0x44 | sizeof(T) | Value. |
0x44 + sizeof(T) | 4 | Next entry node index. A value of 0 indicates the end of the list. |