Difference between revisions of "TSEC Firmware"

From Nintendo Switch Brew
Jump to navigation Jump to search
(better names)
(→‎Main: better)
Line 944: Line 944:
 
  u32 c_old = cauth_old;
 
  u32 c_old = cauth_old;
 
   
 
   
// fuc5 crypt cauth instruction
 
 
  // Set auth_addr to 0x300 and auth_size to blob1_size
 
  // Set auth_addr to 0x300 and auth_size to blob1_size
  cauth((blob1_size << 0x10) | (0x300 >> 0x08));
+
  $cauth = ((blob1_size << 0x10) | (0x300 >> 0x08));
 
   
 
   
 
  // fuc5 crypt cxset instruction
 
  // fuc5 crypt cxset instruction
Line 978: Line 977:
 
   return keygenldr_res;
 
   return keygenldr_res;
 
   
 
   
// fuc5 crypt cauth instruction
 
 
  // Restore previous cauth value
 
  // Restore previous cauth value
  cauth(c_old);
+
  $cauth = c_old;
 
   
 
   
 
  u8 flcn_hdr_buf[0x18];
 
  u8 flcn_hdr_buf[0x18];

Revision as of 10:21, 11 February 2019

Boot Process

TSEC is configured and initialized by the first bootloader during key generation.

[6.2.0+] TSEC is now configured at the end of the first bootloader's main function.

Initialization

During this stage several clocks are programmed.

// Program the HOST1X clock and resets
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
enable_host1x_clkrst();

// Program the TSEC clock and resets
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
enable_tsec_clkrst();

// Program the SOR_SAFE clock and resets
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
enable_sor_safe_clkrst();

// Program the SOR0 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
enable_sor0_clkrst();

// Program the SOR1 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
enable_sor1_clkrst();

// Program the KFUSE clock resets
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
enable_kfuse_clkrst();

Configuration

In this stage the Falcon IRQs, interfaces and DMA engine are configured.

// Clear the Falcon DMA control register
*(u32 *)FALCON_DMACTL = 0;

// Enable Falcon IRQs
*(u32 *)FALCON_IRQMSET = 0xFFF2;

// Enable Falcon IRQs
*(u32 *)FALCON_IRQDEST = 0xFFF0;

// Enable Falcon interfaces
*(u32 *)FALCON_ITFEN = 0x03;

// Wait for Falcon's DMA engine to be idle
wait_flcn_dma_idle();

Firmware loading

The Falcon firmware code is stored in the first bootloader's data segment in IMEM.

// Set DMA transfer base address to 0x40011900 >> 0x08
*(u32 *)FALCON_DMATRFBASE = 0x400119;

u32 trf_mode = 0;     // A value of 0 sets FALCON_DMATRFCMD_IMEM
u32 dst_offset = 0;
u32 src_offset = 0;

// Load code into Falcon (0x100 bytes at a time)
while (src_offset < 0xF00)
{
   flcn_load_firm(trf_mode, src_offset, dst_offset);
   src_offset += 0x100;
   dst_offset += 0x100;
}

[6.2.0+] The transfer base address and size of the Falcon firmware code changed.

// Set DMA transfer base address to 0x40010E00 >> 0x08
*(u32 *)FALCON_DMATRFBASE = 0x40010E;

u32 trf_mode = 0;     // A value of 0 sets FALCON_DMATRFCMD_IMEM
u32 dst_offset = 0;
u32 src_offset = 0;

// Load code into Falcon (0x100 bytes at a time)
while (src_offset < 0x2900)
{
   flcn_load_firm(trf_mode, src_offset, dst_offset);
   src_offset += 0x100;
   dst_offset += 0x100;
}

Firmware booting

Falcon is booted up and the first bootloader waits for it to finish.

// Set magic value in host1x scratch space
*(u32 *)0x50003300 = 0x34C2E1DA;

// Clear Falcon scratch1 MMIO
*(u32 *)FALCON_SCRATCH1 = 0;

// Set Falcon boot key version in scratch0 MMIO
*(u32 *)FALCON_SCRATCH0 = 0x01;

// Set Falcon's boot vector address
*(u32 *)FALCON_BOOTVEC = 0;

// Signal Falcon's CPU
*(u32 *)FALCON_CPUCTL = 0x02;

// Wait for Falcon's DMA engine to be idle
wait_flcn_dma_idle();

u32 boot_res = 0;

// The bootloader allows the TSEC two seconds from this point to do its job
u32 maximum_time = read_timer() + 2000000; 

while (!boot_res)
{
   // Read boot result from scratch1 MMIO
   boot_res = *(u32 *)FALCON_SCRATCH1;
   
   // Read from TIMERUS_CNTR_1US (microseconds from boot)
   u32 current_time = read_timer();
   
   // Booting is taking too long
   if (current_time > maximum_time)
      panic();
}

// Invalid boot result was returned
if (boot_res != 0xB0B0B0B0)
   panic();

[6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.

// Set magic value in host1x scratch space
*(u32 *)0x50003300 = 0x34C2E1DA;

// Clear Falcon scratch1 MMIO
*(u32 *)FALCON_SCRATCH1 = 0;

// Set Falcon boot key version in scratch0 MMIO
*(u32 *)FALCON_SCRATCH0 = 0x01;

// Set Falcon's boot vector address
*(u32 *)FALCON_BOOTVEC = 0;

// Signal Falcon's CPU
*(u32 *)FALCON_CPUCTL = 0x02;

// Infinite loop
deadlock();

TSEC key generation

The TSEC key is generated by reading SOR1 registers modified by the Falcon CPU.

// Clear magic value in host1x scratch space
*(u32 *)0x50003300 = 0;

// Read TSEC key
u32 tsec_key[4]; 
tsec_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB;
tsec_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB;
tsec_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB;
tsec_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB;

// Clear SOR1 registers
*(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0;
*(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0;
*(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0;
*(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0;

if (out_size < 0x10)
   out_size = 0x10;

// Copy back the TSEC key
memcpy(out_buf, tsec_key, out_size);

[6.2.0+] This is now done inside an encrypted TSEC payload.

Cleanup

Clocks and resets are disabled before returning.

// Deprogram KFUSE clock and resets
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
disable_kfuse_clkrst();

// Deprogram SOR1 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
disable_sor1_clkrst();

// Deprogram SOR0 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
disable_sor0_clkrst();

// Deprogram SOR_SAFE clock and resets
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
disable_sor_safe_clkrst();

// Deprogram TSEC clock and resets
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
disable_tsec_clkrst();

// Deprogram HOST1X clock and resets
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
disable_host1x_clkrst();

return;

TSEC Firmware

The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs (names are unofficial): Boot (unencrypted and unauthenticated code), KeygenLdr (unencrypted and authenticated code), Keygen (encrypted and authenticated code) and key data.

[6.2.0+] There are now 2 new blobs (names are unofficial): SecureBootLdr (unencrypted and unauthenticated code), SecureBoot (part unencrypted and unauthenticated code, part encrypted and authenticated code).

Firmware can be disassembled with envytools' envydis:

envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt

Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.

Boot

During this stage, key data is loaded and KeygenLdr is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the key used by the first bootloader.

[6.2.0+] During this stage, key data is loaded and execution jumps to SecureBootLdr.

Initialization

Falcon sets up it's own stack pointer.

// Read data segment size from IO space
u32 data_seg_size = *(u32 *)UC_CAPS;
data_seg_size >>= 0x09;
data_seg_size &= 0x1FF;
data_seg_size <<= 0x08;

// Set the stack pointer
*(u32 *)sp = data_seg_size;

Main

Falcon reads the key data and then authenticates, loads and executes KeygenLdr which sets the TSEC key.

u32 boot_base_addr = 0;
u8 key_data_buf[0x7C];

// Read the key data from memory
u32 key_data_addr = 0x300;
u32 key_data_size = 0x7C;
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);

// Read the next code segment into boot base
u32 blob1_addr = 0x400;
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
memcpy_i2d(boot_base_addr, blob1_addr, blob1_size);

// Upload the next code segment into Falcon's CODE region
u32 blob1_virt_addr = 0x300;
bool use_secret = true;
memcpy_d2i(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);

u32 boot_res = 0;
bool is_done = false;
u32 time = 0;
bool is_blob_dec = false;

while (!is_done)
{
   if (time > 4000000)
   {
      // Write boot failed (timeout) magic to FALCON_SCRATCH1
      boot_res = 0xC0C0C0C0;
      *(u32 *)FALCON_SCRATCH1 = boot_res;
      
      break;
   }
   
   // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01)
   u32 key_version = *(u32 *)FALCON_SCRATCH0;

   if (key_version == 0x64)
   {
      // Skip all next stages
      boot_res = 0xB0B0B0B0;
      *(u32 *)FALCON_SCRATCH1 = boot_res;
      
      break;
   }
   else
   {
      if (key_version > 0x03)
         boot_res = 0xD0D0D0D0;    // Invalid key version
      else if (key_version == 0)
         boot_res = 0xB0B0B0B0;    // No keys used
      else
      {
         u32 key_buf[0x7C];
         
         // Copy key data
         memcpy(key_buf, key_data_buf, 0x7C);

         u32 crypt_reg_flag = 0x00060000;
         u32 blob1_hash_addr = key_buf + 0x20; 

         // fuc5 crypt cauth instruction
         // Set auth_addr to 0x300 and auth_size to blob1_size
         cauth((blob1_size << 0x10) | (0x300 >> 0x08));

         // fuc5 crypt cxset instruction
         // The next 2 xfer instructions will be overridden
         // and target changes from DMA to crypto
         cxset(0x02);
         
         // Transfer data to crypto register c6
	  xdst(0, (blob1_hash_addr | crypt_reg_flag));
	  			
	  // Wait for all data loads/stores to finish
	  xdwait();
         
         // Jump to KeygenLdr
         u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec);
         is_blob_dec = true;  // Set this to prevent decrypting again

         // Set boot finish magic on success
	  if (keygenldr_res == 0)
            boot_res = 0xB0B0B0B0
      }
      
      // Write result to FALCON_SCRATCH1
      *(u32 *)FALCON_SCRATCH1 = boot_res;

      if (boot_res == 0xB0B0B0B0)
         is_done = true;
   }

   time++;
}

// Overwrite the TSEC key in SOR1 registers
// This has no effect because the KeygenLdr locks out the TSEC DMA engine
tsec_set_key(key_data_buf);

return boot_res;

[6.2.0+] Falcon reads the key data and jumps to SecureBootLdr.

u8 key_data_buf[0x84];

// Read the key data from memory
u32 key_data_addr = 0x300;
u32 key_data_size = 0x84;
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);

// Calculate the next blob's address
u32 blob4_size = *(u32 *)(key_data_buf + 0x80);
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size);

// Jump to next blob
(void *)blob3_addr();
 
return 0;

tsec_set_key

This method takes key_data_buf (a 16 bytes buffer) as argument and writes its contents to SOR1 registers.

// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40)
*(u32 *)TSEC_DMA_CFG = 0xFFF;

// Read the key's words
u32 key0 = *(u32 *)(key_data_buf + 0x00);
u32 key1 = *(u32 *)(key_data_buf + 0x04);
u32 key2 = *(u32 *)(key_data_buf + 0x08);
u32 key3 = *(u32 *)(key_data_buf + 0x0C);

u32 result = 0;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0);

// Failed to write
if (result)
   return result;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1);

// Failed to write
if (result)
   return result;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2);

// Failed to write
if (result)
   return result;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3);

// Failed to write
if (result)
   return result;

return result;
tsec_dma_write

This method takes addr and value as arguments and performs a DMA write using TSEC MMIO.

u32 result = 0;

// Wait for TSEC DMA engine
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
result = wait_tsec_dma();

// Wait failed
if (result)
   return 1;

// Set the destination address
// This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40)
*(u32 *)TSEC_DMA_ADDR = addr;

// Set the value
// This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40)
*(u32 *)TSEC_DMA_VAL = value;

// Start transfer?
// This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40)
*(u32 *)TSEC_DMA_CMD = 0x800000F2;

// Wait for TSEC DMA engine
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
result = wait_tsec_dma();

// Wait failed
if (result)
   return 1;

return 0;

KeygenLdr

This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Keygen.

Main

// Clear interrupt flags
*(u8 *)flags_ie0 = 0;
*(u8 *)flags_ie1 = 0;
*(u8 *)flags_ie2 = 0;

// fuc5 crypt cxset instruction
// Clear overrides
cxset(0x80);

// fuc5 crypt cauth instruction
// Clear bit 0x13 in cauth
cauth(cauth_old & ~(1 << 0x13));

// Set the target port for memory transfers
xtargets(0);

// Wait for all data loads/stores to finish
xdwait();

// Wait for all code loads to finish
xcwait();

// fuc5 crypt cxset instruction
// The next 2 xfer instructions will be overridden
// and target changes from DMA to crypto
cxset(0x02);

// Transfer data to crypto register c0
// This should clear any leftover data
xdst(0, 0);

// Wait for all data loads/stores to finish
xdwait();

// Clear all crypto registers, except c6 which is used for auth
cxor(c0, c0);
cmov(c1, c0);
cmov(c2, c0);
cmov(c3, c0);
cmov(c4, c0);
cmov(c5, c0);
cmov(c7, c0);

// Clear TSEC_TEGRA_CTL_TKFI_KFUSE
// This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40)
*(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF;

// Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
// This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40)
*(u32 *)TSEC_SCP_CTL_PKEY |= 0x01;

u32 is_pkey_loaded = 0;

// Wait for TSEC_SCP_CTL_PKEY_LOADED
while (!is_pkey_loaded)
   is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02);

// Read data segment size from IO space
u32 data_seg_size = *(u32 *)UC_CAPS;
data_seg_size >>= 0x09;
data_seg_size &= 0x1FF;
data_seg_size <<= 0x08;

// Check stack bounds
if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800))
  exit();

// Decrypt and load Keygen stage
load_keygen(key_buf, key_version, is_blob_dec);

// fuc5 crypt csigclr instruction
// Clears the cauth signature
csigclr();

// Clear all crypto registers
cxor(c0, c0);
cxor(c1, c1);
cxor(c2, c2);
cxor(c3, c3);
cxor(c4, c4);
cxor(c5, c5);
cxor(c6, c6);
cxor(c7, c7);

// Exit Authenticated Mode
// This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40)
*(u32 *)TSEC_SCP_CTL_LOCK = 0;

return;

load_keygen

u32 res = 0;

u32 boot_base_addr = 0;
u32 blob0_addr = 0;
u32 blob0_size = *(u32 *)(key_buf + 0x70); 

// Load blob0 code again
memcpy_i2d(boot_base_addr, blob0_addr, blob0_size);

// Generate "CODE_SIG_01" key into c4 crypto register
gen_usr_key(0, 0);

// Encrypt buffer with c4
u8 sig_key[0x10];
enc_buf(sig_key, blob0_size);

u32 src_addr = boot_base_addr;
u32 src_size = blob0_size;
u32 iv_addr = sig_key;
u32 dst_addr = sig_key;
u32 mode = 0x02;   // AES-CMAC
u32 use_imem = 0;

// Do AES-CMAC over blob0 code
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, use_imem);

// Compare the hashes
if (memcmp(dst_addr, key_buf + 0x10, 0x10))
{
  res = 0xDEADBEEF;
  return res;
}

u32 blob1_size = *(u32 *)(key_buf + 0x74);

// Decrypt Keygen blob if needed
if (!is_blob_dec)
{
   // Read Stage2's size from key buffer
   u32 blob2_size = *(u32 *)(key_buf + 0x78);

   // Check stack bounds
   if (*(u32 *)sp > blob2_size)
   {
      u32 boot_base_addr = 0;
      u32 blob2_virt_addr = blob0_size + blob1_size;
      u32 blob2_addr = blob2_virt_addr + 0x100;
      
      // Read Keygen encrypted blob
      memcpy_i2d(boot_base_addr, blob2_addr, blob2_size);

      // Generate "CODE_ENC_01" key into c4 crypt register
      gen_usr_key(0x01, 0x01);
      
      u32 src_addr = boot_base_addr;
      u32 src_size = blob2_size;
      u32 iv_addr = key_buf + 0x40;
      u32 dst_addr = boot_base_addr;
      u32 mode = 0;   // AES-128-ECB
      u32 use_imem = 0;
      
      // Decrypt Keygen blob
      do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, use_imem);
      
      // Upload the next code segment into Falcon's CODE region
      bool use_secret = true;
      memcpy_d2i(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret);

      // Clear out the decrypted blob
      memset(boot_base_addr, 0, blob2_size);
   }
}

// fuc5 crypt cxset instruction
// The next 2 xfer instructions will be overridden
// and target changes from DMA to crypto
cxset(0x02);

u32 crypt_reg_flag = 0x00060000;
u32 blob2_hash_addr = key_buf + 0x30;

// Transfer data to crypto register c6
xdst(0, (blob2_hash_addr | crypt_reg_flag));
				
// Wait for all data loads/stores to finish
xdwait();

// Save previous cauth value
u32 c_old = cauth_old;

// fuc5 crypt cauth instruction
// Set auth_addr to blob2_virt_addr and auth_size to blob2_size
cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10));

u32 hovi_key_addr = 0;

// Select next stage key
if (key_version == 0x01)		// Use HOVI_EKS_01
  hovi_key_addr = key_buf + 0x50;
else if (key_version == 0x02)	        // Use HOVI_COMMON_01
  hovi_key_addr = key_buf + 0x60;
else if (key_version == 0x03)	        // Use debug key (empty)
  hovi_key_addr = key_buf + 0x00;
else
  res = 0xD0D0D0D0
	
// Jump to Keygen
if (hovi_key_addr)
  res = exec_keygen(hovi_key_addr, key_version);
         
// Clear out key data
memset(key_buf, 0, 0x7C);

// fuc5 crypt cauth instruction
// Restore previous cauth value
cauth(c_old);

return res;
gen_usr_key

This method takes type and mode as arguments and generates a key.

u8 seed_buf[0x10];

// Read a 16 bytes seed based on supplied type
/*
   Type 0: "CODE_SIG_01" + null padding
   Type 1: "CODE_ENC_01" + null padding
*/
get_seed(seed_buf, type);

// This will write the seed into crypto register c0 
crypt_store(0, seed_buf);

// fuc5 csecret instruction
// Load selected secret into crypto register c1
csecret(c1, 0x26);

// fuc5 ckeyreg instruction
// Bind c1 register as the key for enc/dec operations
ckeyreg(c1);

// fuc5 cenc instruction
// Encrypt seed_buf (in c0) using keyreg value as key into c1
cenc(c1, c0);

// fuc5 csigenc instruction
// Encrypt c1 register with the auth signature stored in c6
csigenc(c1, c1);

// Copy the result into c4 (will be used as key)
cmov(c4, c1);

// Do key expansion (for decryption)
if (mode != 0)
   ckexp(c4, c4);		// fuc5 ckexp instruction

return;
enc_buffer

This method takes buf (a 16 bytes buffer) and size as arguments and encrypts the supplied buffer.

// Set first 3 words to null
*(u32 *)(buf + 0x00) = 0;
*(u32 *)(buf + 0x04) = 0;
*(u32 *)(buf + 0x08) = 0;

// Swap halves (b16, b32 and b16 again)
hswap(size);

// Store the size as the last word
*(u32 *)(buf + 0x0C) = size;

// This will write buf into crypto register c3 
crypt_store(0x03, buf);

// fuc5 ckeyreg instruction
// Bind c4 register (from keygen) as the key for enc/dec operations
ckeyreg(c4);

// fuc5 cenc instruction
// Encrypt buf (in c3) using keyreg value as key into c5
cenc(c5, c3);

// This will read into buf from crypto register c5 
crypt_load(0x05, buf);

return;
do_crypto

This is the method responsible for all crypto operations performed during KeygenLdr. It takes src_addr, src_size, iv_addr, dst_addr, mode and use_imem as arguments.

// Check for invalid source data size
if (!src_size || (src_size & 0x0F))
  exit();

// Check for invalid source data address
if (src_addr & 0x0F)
  exit();

// Check for invalid destination data address
if (dst_addr & 0x0F)
  exit();

// Use IV if available
if (iv_addr)
{
  // This will write the iv_addr into crypto register c5 
  crypt_store(0x05, iv_addr);
}
else
{
  // Clear c5 register (use null IV)
  cxor(c5, c5);
}

// Use key in c4
ckeyreg(c4);

// AES-128-CBC decrypt
if (mode == 0x00)
{
  // Create crypto script with 5 instructions
  cs0begin(0x05);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cdec(c2, c3);                // Decrypt from c3 into c2
  cxor(c5, c2);                // XOR c2 with c5 and store in c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
  cmov(c5, c3);                // Move c3 into c5
}
else if (mode == 0x01)		// AES-128-CBC encrypt
{
  // Create crypto script with 4 instructions
  cs0begin(0x04);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cxor(c3, c5);                // XOR c5 with c3 and store in c3
  cenc(c5, c3);                // Encrypt from c3 into c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
}
else if (mode == 0x02)		// AES-CMAC
{
  // Create crypto script with 3 instructions
  cs0begin(0x03);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cxor(c5, c3);                // XOR c5 with c3 and store in c3
  cenc(c5, c5);                // Encrypt from c5 into c5
}
else if (mode == 0x03)		// AES-128-ECB decrypt
{
  // Create crypto script with 3 instructions
  cs0begin(0x03);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cdec(c5, c3);                // Decrypt from c3 into c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
}
else if (mode == 0x04)		// AES-128-ECB encrypt
{
  // Create crypto script with 3 instructions
  cs0begin(0x03);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cenc(c5, c3);                // Encrypt from c3 into c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
}
else
  return;

// Main loop
while (src_size > 0)
{
  u32 blk_count = (src_size >> 0x04);
	
  if (blk_count > 0x10)
    blk_count = 0x10;
  
  // Check size align
  if (blk_count & (blk_count - 0x01))
    blk_count = 0x01;

  u32 blk_size = (blk_count << 0x04);
  
  u32 crypt_xfer_src = 0;
  u32 crypt_xfer_dst = 0;
  
  if (block_size == 0x20)
  {
     crypt_xfer_src = (0x00030000 | src_addr);
     crypt_xfer_dst = (0x00030000 | dst_addr);
     
     // Execute crypto script 2 times (1 for each block)
     cs0exec(0x02);
  }
  if (block_size == 0x40)
  {
     crypt_xfer_src = (0x00040000 | src_addr);
     crypt_xfer_dst = (0x00040000 | dst_addr);
     
     // Execute crypto script 4 times (1 for each block)
     cs0exec(0x04);
  }
  if (block_size == 0x80)
  {
     crypt_xfer_src = (0x00050000 | src_addr);
     crypt_xfer_dst = (0x00050000 | dst_addr);
     
     // Execute crypto script 8 times (1 for each block)
     cs0exec(0x08);
  }
  if (block_size == 0x100)
  {
     crypt_xfer_src = (0x00060000 | src_addr);
     crypt_xfer_dst = (0x00060000 | dst_addr);
     
     // Execute crypto script 16 times (1 for each block)
     cs0exec(0x10);
  }
  else
  {
     crypt_xfer_src = (0x00020000 | src_addr);
     crypt_xfer_dst = (0x00020000 | dst_addr);
     
     // Execute crypto script 1 time (1 for each block)
     cs0exec(0x01);

     // Ensure proper block size
     block_size = 0x10;
  }

  // fuc5 crypt cxset instruction
  // The next xfer instruction will be overridden
  // and target changes from DMA to crypto input/output stream
  if (use_imem)
    cxset(0xA1);         // Flag 0xA0 is falcon imem <-> crypto input/output stream
  else
    cxset(0x21);         // Flag 0x20 is external mem <-> crypto input/output stream

  // Transfer data into the crypto input/output stream
  xdst(crypt_xfer_src, crypt_xfer_src);
  
  // AES-CMAC only needs one more xfer instruction
  if (mode == 0x02)
  {
     // fuc5 crypt cxset instruction
     // The next xfer instruction will be overridden
     // and target changes from DMA to crypto input/output stream
     if (use_imem)
       cxset(0xA1);     // Flag 0xA0 is falcon imem <-> crypto input/output stream
     else
       cxset(0x21);     // Flag 0x20 is external mem <-> crypto input/output stream
		
     // Wait for all data loads/stores to finish
     xdwait();
  }
  else  // AES enc/dec needs 2 more xfer instructions
  {
     // fuc5 crypt cxset instruction
     // The next 2 xfer instructions will be overridden
     // and target changes from DMA to crypto input/output stream
     if (use_imem)
       cxset(0xA2);            // Flag 0xA0 is falcon imem <-> crypto input/output stream
     else
       cxset(0x22);            // Flag 0x20 is external mem <-> crypto input/output stream

     // Transfer data from the crypto input/output stream
     xdld(crypt_xfer_dst, crypt_xfer_dst);
		
     // Wait for all data loads/stores to finish
     xdwait();

     // Increase the destination address by block size
     dst_addr += block_size;
  }
  
  // Increase the source address by block size
  src_addr += block_size;

  // Decrease the source size by block size
  src_size -= block_size;
}

// AES-CMAC result is in c5
if (mode == 0x02)
{
   // This will read into dst_addr from crypto register c5 
   crypt_load(0x05, dst_addr);
}

return;

Keygen

This stage is decrypted by KeygenLdr using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC key.

SecureBootLdr

[6.2.0+] This was introduced to try to recover the secure boot from the RCM vulnerability.

This stage starts by authenticating and executing KeygenLdr which in turn authenticates, decrypts and executes Keygen (both blobs remain unchanged from previous firmware versions). After the TSEC key has been generated, execution returns to this stage which then parses and executes SecureBoot.

Main

u8 key_data_buf[0x84];
u8 tmp_key_data_buf[0x84];

// Read the key data from memory
u32 key_data_addr = 0x300;
u32 key_data_size = 0x84;
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);

// Read the KeygenLdr blob from memory
u32 boot_base_addr = 0;
u32 blob1_addr = 0x400;
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
memcpy_i2d(boot_base_addr, blob1_addr, blob1_size);
 
// Upload the next code segment into Falcon's CODE region
u32 blob1_virt_addr = 0x300;
bool use_secret = true;
memcpy_d2i(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);

// Backup the key data
memcpy(tmp_key_data_buf, key_data_buf, 0x84);

// Save previous cauth value
u32 c_old = cauth_old;

// Set auth_addr to 0x300 and auth_size to blob1_size
$cauth = ((blob1_size << 0x10) | (0x300 >> 0x08));

// fuc5 crypt cxset instruction
// The next 2 xfer instructions will be overridden
// and target changes from DMA to crypto
cxset(0x02);

u32 crypt_reg_flag = 0x00060000;
u32 blob1_hash_addr = tmp_key_data_buf + 0x20; 

// Transfer data to crypto register c6
xdst(0, (blob1_hash_addr | crypt_reg_flag));

// Wait for all data loads/stores to finish
xdwait();

u32 key_version = 0x01;
bool is_blob_dec = false;

// Jump to KeygenLdr
u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec);

// Set boot finish magic on success
if (keygenldr_res == 0)
  keygenldr_res = 0xB0B0B0B0
      
// Write result to FALCON_SCRATCH1
*(u32 *)FALCON_SCRATCH1 = keygenldr_res;

if (keygenldr_res != 0xB0B0B0B0)
  return keygenldr_res;

// Restore previous cauth value
$cauth = c_old;

u8 flcn_hdr_buf[0x18];
u8 flcn_os_hdr_buf[0x10];

blob1_size = *(u32 *)(key_data_buf + 0x74);
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);

// Read the SecureBoot blob's Falcon header from memory
u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size);
memcpy_i2d(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18);

blob1_size = *(u32 *)(key_data_buf + 0x74);
blob2_size = *(u32 *)(key_data_buf + 0x78);
blob0_size = *(u32 *)(key_data_buf + 0x70);
u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C);

// Read the SecureBoot blob's Falcon OS header from memory
u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size);
memcpy_i2d(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10);

blob1_size = *(u32 *)(key_data_buf + 0x74);
blob2_size = *(u32 *)(key_data_buf + 0x78);
blob0_size = *(u32 *)(key_data_buf + 0x70);
u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);

// Read the SecureBoot blob's Falcon OS image from memory
u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size);
memcpy_i2d(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size);

// Upload the SecureBoot's Falcon OS image boot stub code segment into Falcon's CODE region
u32 blob4_flcn_os_boot_virt_addr = 0;
u32 blob4_flcn_os_boot_size = 0x100;
use_secret = false;
memcpy_d2i(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret);

flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); 

// Upload the SecureBoot blob's Falcon OS encrypted image code segment into Falcon's CODE region
u32 blob4_flcn_os_img_virt_addr = 0x100;
u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100);
use_secret = true;
memcpy_d2i(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret);

// Wait for all code loads to finish
xcwait();

blob1_size = *(u32 *)(key_data_buf + 0x74);
blob2_size = *(u32 *)(key_data_buf + 0x78);
blob0_size = *(u32 *)(key_data_buf + 0x70);
flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08);

// Read the SecureBoot blob's falcon OS image's hash from memory
u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size);
memcpy_i2d(0, blob4_flcn_os_img_hash_addr, 0x10);

// Read data segment size from IO space
u32 data_seg_size = *(u32 *)UC_CAPS;
data_seg_size >>= 0x03;
data_seg_size &= 0x3FC0;

u32 data_addr = 0x10;

// Clear all data except the first 0x10 bytes (SecureBoot blob's Falcon OS image's hash)
for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++)
{
  *(u32 *)(data_addr) = 0; 
  data_addr += 0x04;
}

// Clear all crypto registers
cxor(c0, c0);
cxor(c1, c1);
cxor(c2, c2);
cxor(c3, c3);
cxor(c4, c4);
cxor(c5, c5);
cxor(c6, c6);
cxor(c7, c7);

// fuc5 crypt csigclr instruction
// Clears the cauth signature
csigclr();

// Jump to SecureBoot
exec_payload();

return 0xB0B0B0B0;

SecureBoot

[6.2.0+] This was introduced to try to recover the secure boot from the RCM vulnerability.

This stage prepares the stack then authenticates, decrypts and executes the SecureBoot blob's Falcon OS image.

Main

// Read data segment size from IO space
u32 data_seg_size = *(u32 *)UC_CAPS;
data_seg_size >>= 0x01;
data_seg_size &= 0xFF00;

// Set the stack pointer
*(u32 *)sp = data_seg_size;

// Jump to the SecureBoot blob's Falcon OS image boot stub
exec_flcn_os_boot();

// Halt execution
exit();

return;

exec_flcn_os_boot

// Read the transfer base address from IO space
u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE;

// Copy transfer base address to data memory
u32 scratch_data_addr = 0x300;
*(u32 *)scratch_data_addr = xfer_ext_base_addr;

// Set the transfer base address
xcbase(xfer_ext_base_addr);

// fuc5 crypt cxset instruction
// The next xfer instruction will be overridden
// and target changes from DMA to crypto
cxset(0x01);

u32 crypt_reg_flag = 0x00060000;
u32 blob4_flcn_os_img_hash_addr = 0; 

// Transfer data to crypto register c6
xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag));

// fuc5 crypt cxset instruction
// The next xfer instruction will be overridden
// and target changes from DMA to crypto
cxset(0x01);

// Wait for all data loads/stores to finish
xdwait();

cmov(c7, c6);
cxor(c7, c7);

// fuc5 crypt cauth instruction
// Set auth_addr to 0x100, auth_size to 0x1300,
// bit 16 (is_secret) and bit 17 (is_encrypted)
cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08));

// Clear interrupt flags
*(u8 *)flags_ie0 = 0;
*(u8 *)flags_ie1 = 0;

// Jump to the SecureBoot blob's Falcon OS image
exec_flcn_os_img();

return 0x0F0F0F0F;

Key data

Small buffer stored after the Boot blob and used across all stages.

Offset Size Description
0x00 0x10 Debug key (empty)
0x10 0x10 blob0 (Boot) auth hash
0x20 0x10 blob1 (KeygenLdr) auth hash
0x30 0x10 blob2 (Keygen) auth hash
0x40 0x10 blob2 (Keygen) AES IV
0x50 0x10 HOVI EKS seed
0x60 0x10 HOVI COMMON seed
0x70 0x04 blob0 (Boot) size
0x74 0x04 blob1 (KeygenLdr) size
0x78 0x04 blob2 (Keygen) size
0x7C 0x04 [6.2.0+] blob3 (SecureBootLdr) size
0x80 0x04 [6.2.0+] blob4 (SecureBoot) size