Changes

33,821 bytes removed ,  06:51, 4 January 2019
no edit summary
Line 1,736: Line 1,736:  
| 27
 
| 27
 
| TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C
 
| TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C
|}
  −
  −
= Boot Process =
  −
TSEC is configured and initialized by the first bootloader during key generation.
  −
  −
[6.2.0+] TSEC is now configured at the end of the first bootloader's main function.
  −
  −
== Initialization ==
  −
During this stage several clocks are programmed.
  −
// Program the HOST1X clock and resets
  −
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
  −
enable_host1x_clkrst();
  −
  −
// Program the TSEC clock and resets
  −
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
  −
enable_tsec_clkrst();
  −
  −
// Program the SOR_SAFE clock and resets
  −
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
  −
enable_sor_safe_clkrst();
  −
  −
// Program the SOR0 clock and resets
  −
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
  −
enable_sor0_clkrst();
  −
  −
// Program the SOR1 clock and resets
  −
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
  −
enable_sor1_clkrst();
  −
  −
// Program the KFUSE clock resets
  −
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
  −
enable_kfuse_clkrst();
  −
  −
== Configuration ==
  −
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
  −
// Clear the Falcon DMA control register
  −
*(u32 *)FALCON_DMACTL = 0;
  −
  −
// Enable Falcon IRQs
  −
*(u32 *)FALCON_IRQMSET = 0xFFF2;
  −
  −
// Enable Falcon IRQs
  −
*(u32 *)FALCON_IRQDEST = 0xFFF0;
  −
  −
// Enable Falcon interfaces
  −
*(u32 *)FALCON_ITFEN = 0x03;
  −
  −
// Wait for Falcon's DMA engine to be idle
  −
wait_flcn_dma_idle();
  −
  −
== Firmware loading ==
  −
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
  −
// Set DMA transfer base address to 0x40011900 >> 0x08
  −
*(u32 *)FALCON_DMATRFBASE = 0x400119;
  −
  −
u32 trf_mode = 0;    // A value of 0 sets FALCON_DMATRFCMD_IMEM
  −
u32 dst_offset = 0;
  −
u32 src_offset = 0;
  −
  −
// Load code into Falcon (0x100 bytes at a time)
  −
while (src_offset < 0xF00)
  −
{
  −
    flcn_load_firm(trf_mode, src_offset, dst_offset);
  −
    src_offset += 0x100;
  −
    dst_offset += 0x100;
  −
}
  −
  −
[6.2.0+] The transfer base address and size of the Falcon firmware code changed.
  −
// Set DMA transfer base address to 0x40010E00 >> 0x08
  −
*(u32 *)FALCON_DMATRFBASE = 0x40010E;
  −
  −
u32 trf_mode = 0;    // A value of 0 sets FALCON_DMATRFCMD_IMEM
  −
u32 dst_offset = 0;
  −
u32 src_offset = 0;
  −
  −
// Load code into Falcon (0x100 bytes at a time)
  −
while (src_offset < 0x2900)
  −
{
  −
    flcn_load_firm(trf_mode, src_offset, dst_offset);
  −
    src_offset += 0x100;
  −
    dst_offset += 0x100;
  −
}
  −
  −
== Firmware booting ==
  −
Falcon is booted up and the first bootloader waits for it to finish.
  −
// Set magic value in host1x scratch space
  −
*(u32 *)0x50003300 = 0x34C2E1DA;
  −
  −
// Clear Falcon scratch1 MMIO
  −
*(u32 *)FALCON_SCRATCH1 = 0;
  −
  −
// Set Falcon boot key version in scratch0 MMIO
  −
*(u32 *)FALCON_SCRATCH0 = 0x01;
  −
  −
// Set Falcon's boot vector address
  −
*(u32 *)FALCON_BOOTVEC = 0;
  −
  −
// Signal Falcon's CPU
  −
*(u32 *)FALCON_CPUCTL = 0x02;
  −
  −
// Wait for Falcon's DMA engine to be idle
  −
wait_flcn_dma_idle();
  −
  −
u32 boot_res = 0;
  −
  −
// The bootloader allows the TSEC two seconds from this point to do its job
  −
u32 maximum_time = read_timer() + 2000000;
  −
  −
while (!boot_res)
  −
{
  −
    // Read boot result from scratch1 MMIO
  −
    boot_res = *(u32 *)FALCON_SCRATCH1;
  −
   
  −
    // Read from TIMERUS_CNTR_1US (microseconds from boot)
  −
    u32 current_time = read_timer();
  −
   
  −
    // Booting is taking too long
  −
    if (current_time > maximum_time)
  −
      panic();
  −
}
  −
  −
// Invalid boot result was returned
  −
if (boot_res != 0xB0B0B0B0)
  −
    panic();
  −
  −
[6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.
  −
// Set magic value in host1x scratch space
  −
*(u32 *)0x50003300 = 0x34C2E1DA;
  −
  −
// Clear Falcon scratch1 MMIO
  −
*(u32 *)FALCON_SCRATCH1 = 0;
  −
  −
// Set Falcon boot key version in scratch0 MMIO
  −
*(u32 *)FALCON_SCRATCH0 = 0x01;
  −
  −
// Set Falcon's boot vector address
  −
*(u32 *)FALCON_BOOTVEC = 0;
  −
  −
// Signal Falcon's CPU
  −
*(u32 *)FALCON_CPUCTL = 0x02;
  −
  −
// Infinite loop
  −
deadlock();
  −
  −
== TSEC key generation ==
  −
The TSEC key is generated by reading SOR1 registers modified by the Falcon CPU.
  −
// Clear magic value in host1x scratch space
  −
*(u32 *)0x50003300 = 0;
  −
  −
// Read TSEC key
  −
u32 tsec_key[4];
  −
tsec_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB;
  −
tsec_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB;
  −
tsec_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB;
  −
tsec_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB;
  −
  −
// Clear SOR1 registers
  −
*(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0;
  −
*(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0;
  −
*(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0;
  −
*(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0;
  −
  −
if (out_size < 0x10)
  −
    out_size = 0x10;
  −
  −
// Copy back the TSEC key
  −
memcpy(out_buf, tsec_key, out_size);
  −
  −
[6.2.0+] This is now done inside an encrypted TSEC payload.
  −
  −
== Cleanup ==
  −
Clocks and resets are disabled before returning.
  −
// Deprogram KFUSE clock and resets
  −
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
  −
disable_kfuse_clkrst();
  −
  −
// Deprogram SOR1 clock and resets
  −
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
  −
disable_sor1_clkrst();
  −
  −
// Deprogram SOR0 clock and resets
  −
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
  −
disable_sor0_clkrst();
  −
  −
// Deprogram SOR_SAFE clock and resets
  −
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
  −
disable_sor_safe_clkrst();
  −
  −
// Deprogram TSEC clock and resets
  −
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
  −
disable_tsec_clkrst();
  −
  −
// Deprogram HOST1X clock and resets
  −
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
  −
disable_host1x_clkrst();
  −
  −
return;
  −
  −
= TSEC Firmware =
  −
The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions.
  −
Stored inside the first bootloader, this firmware binary is split into 4 blobs (names are unofficial): [[#Boot|Boot]] (unencrypted and unauthenticated code), [[#KeygenLdr|KeygenLdr]] (unencrypted and authenticated code), [[#Keygen|Keygen]] (encrypted and authenticated code) and [[#Key data|key data]].
  −
  −
[6.2.0+] There are now 6 blobs (names are unofficial): [[#Boot|Boot]] (unencrypted and unauthenticated code), [[#Loader|Loader]] (unencrypted and unauthenticated code), [[#KeygenLdr|KeygenLdr]] (unencrypted and authenticated code), [[#Keygen|Keygen]] (encrypted and authenticated code), [[#Payload|Payload]] (part unencrypted and unauthenticated code, part encrypted and authenticated code) and [[#Key data|key data]].
  −
  −
Firmware can be disassembled with [http://envytools.readthedocs.io/en/latest/ envytools'] [https://github.com/envytools/envytools/tree/master/envydis envydis]:
  −
  −
<code>envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt</code>
  −
  −
Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.
  −
  −
== Boot ==
  −
During this stage, [[#Key data|key data]] is loaded and [[#KeygenLdr|KeygenLdr]] is authenticated, loaded and executed.
  −
Before returning, this stage writes back to the host (using MMIO registers) and sets the key used by the first bootloader.
  −
  −
[6.2.0+] During this stage, [[#Key data|key data]] is loaded and execution jumps to [[#Loader|Loader]].
  −
  −
=== Initialization ===
  −
Falcon sets up it's own stack pointer.
  −
// Read data segment size from IO space
  −
u32 data_seg_size = *(u32 *)UC_CAPS;
  −
data_seg_size >>= 0x09;
  −
data_seg_size &= 0x1FF;
  −
data_seg_size <<= 0x08;
  −
  −
// Set the stack pointer
  −
*(u32 *)sp = data_seg_size;
  −
  −
=== Main ===
  −
Falcon reads the [[#Key data|key data]] and then authenticates, loads and executes [[#KeygenLdr|KeygenLdr]] which sets the TSEC key.
  −
u32 boot_base_addr = 0;
  −
u8 key_data_buf[0x7C];
  −
  −
// Read the key data from memory
  −
u32 key_data_addr = 0x300;
  −
u32 key_data_size = 0x7C;
  −
read_code(key_data_buf, key_data_addr, key_data_size);
  −
  −
// Read the next code segment into boot base
  −
u32 blob1_addr = 0x400;
  −
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
read_code(boot_base_addr, blob1_addr, blob1_size);
  −
  −
// Upload the next code segment into Falcon's CODE region
  −
u32 blob1_virt_addr = 0x300;
  −
bool use_secret = true;
  −
upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
  −
  −
u32 boot_res = 0;
  −
bool is_done = false;
  −
u32 time = 0;
  −
bool is_blob_dec = false;
  −
  −
while (!is_done)
  −
{
  −
    if (time > 4000000)
  −
    {
  −
      // Write boot failed (timeout) magic to FALCON_SCRATCH1
  −
      boot_res = 0xC0C0C0C0;
  −
      *(u32 *)FALCON_SCRATCH1 = boot_res;
  −
     
  −
      break;
  −
    }
  −
   
  −
    // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01)
  −
    u32 key_version = *(u32 *)FALCON_SCRATCH0;
  −
  −
    if (key_version == 0x64)
  −
    {
  −
      // Skip all next stages
  −
      boot_res = 0xB0B0B0B0;
  −
      *(u32 *)FALCON_SCRATCH1 = boot_res;
  −
     
  −
      break;
  −
    }
  −
    else
  −
    {
  −
      if (key_version > 0x03)
  −
          boot_res = 0xD0D0D0D0;    // Invalid key version
  −
      else if (key_version == 0)
  −
          boot_res = 0xB0B0B0B0;    // No keys used
  −
      else
  −
      {
  −
          u32 key_buf[0x7C];
  −
         
  −
          // Copy key data
  −
          memcpy(key_buf, key_data_buf, 0x7C);
  −
  −
          u32 crypt_reg_flag = 0x00060000;
  −
          u32 blob1_hash_addr = key_buf + 0x20;
  −
  −
          // fuc5 crypt cauth instruction
  −
          // Set auth_addr to 0x300 and auth_size to blob1_size
  −
          cauth((blob1_size << 0x10) | (0x300 >> 0x08));
  −
  −
          // fuc5 crypt cxset instruction
  −
          // The next 2 xfer instructions will be overridden
  −
          // and target changes from DMA to crypto
  −
          cxset(0x02);
  −
         
  −
          // Transfer data to crypto register c6
  −
  xdst(0, (blob1_hash_addr | crypt_reg_flag));
  −
 
  −
  // Wait for all data loads/stores to finish
  −
  xdwait();
  −
         
  −
          // Jump to KeygenLdr
  −
          u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec);
  −
          is_blob_dec = true;  // Set this to prevent decrypting again
  −
  −
          // Set boot finish magic on success
  −
  if (keygenldr_res == 0)
  −
            boot_res = 0xB0B0B0B0
  −
      }
  −
     
  −
      // Write result to FALCON_SCRATCH1
  −
      *(u32 *)FALCON_SCRATCH1 = boot_res;
  −
  −
      if (boot_res == 0xB0B0B0B0)
  −
          is_done = true;
  −
    }
  −
  −
    time++;
  −
}
  −
  −
// Overwrite the TSEC key in SOR1 registers
  −
// This has no effect because the KeygenLdr locks out the TSEC DMA engine
  −
tsec_set_key(key_data_buf);
  −
  −
return boot_res;
  −
  −
[6.2.0+] Falcon reads the [[#Key data|key data]] and jumps to [[#Loader|Loader]].
  −
u8 key_data_buf[0x84];
  −
  −
// Read the key data from memory
  −
u32 key_data_addr = 0x300;
  −
u32 key_data_size = 0x84;
  −
read_code(key_data_buf, key_data_addr, key_data_size);
  −
  −
// Calculate the next blob's address
  −
u32 blob4_size = *(u32 *)(key_data_buf + 0x80);
  −
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
  −
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
  −
u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size);
  −
  −
// Jump to next blob
  −
(void *)blob3_addr();
  −
 
  −
return 0;
  −
  −
==== tsec_set_key ====
  −
This method takes '''key_data_buf''' (a 16 bytes buffer) as argument and writes its contents to SOR1 registers.
  −
// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40)
  −
*(u32 *)TSEC_DMA_UNK = 0xFFF;
  −
  −
// Read the key's words
  −
u32 key0 = *(u32 *)(key_data_buf + 0x00);
  −
u32 key1 = *(u32 *)(key_data_buf + 0x04);
  −
u32 key2 = *(u32 *)(key_data_buf + 0x08);
  −
u32 key3 = *(u32 *)(key_data_buf + 0x0C);
  −
  −
u32 result = 0;
  −
  −
// Write to SOR1 register
  −
result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0);
  −
  −
// Failed to write
  −
if (result)
  −
    return result;
  −
  −
// Write to SOR1 register
  −
result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1);
  −
  −
// Failed to write
  −
if (result)
  −
    return result;
  −
  −
// Write to SOR1 register
  −
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2);
  −
  −
// Failed to write
  −
if (result)
  −
    return result;
  −
  −
// Write to SOR1 register
  −
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3);
  −
  −
// Failed to write
  −
if (result)
  −
    return result;
  −
  −
return result;
  −
  −
===== tsec_dma_write =====
  −
This method takes '''addr''' and '''value''' as arguments and performs a DMA write using TSEC MMIO.
  −
u32 result = 0;
  −
  −
// Wait for TSEC DMA engine
  −
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
  −
result = wait_tsec_dma();
  −
  −
// Wait failed
  −
if (result)
  −
    return 1;
  −
  −
// Set the destination address
  −
// This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40)
  −
*(u32 *)TSEC_DMA_ADDR = addr;
  −
  −
// Set the value
  −
// This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40)
  −
*(u32 *)TSEC_DMA_VAL = value;
  −
  −
// Start transfer?
  −
// This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40)
  −
*(u32 *)TSEC_DMA_CMD = 0x800000F2;
  −
  −
// Wait for TSEC DMA engine
  −
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
  −
result = wait_tsec_dma();
  −
  −
// Wait failed
  −
if (result)
  −
    return 1;
  −
  −
return 0;
  −
  −
== KeygenLdr ==
  −
This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing [[#Keygen|Keygen]].
  −
  −
=== Main ===
  −
// Clear interrupt flags
  −
*(u8 *)flags_ie0 = 0;
  −
*(u8 *)flags_ie1 = 0;
  −
*(u8 *)flags_ie2 = 0;
  −
  −
// fuc5 crypt cxset instruction
  −
// Clear overrides?
  −
cxset(0x80);
  −
  −
// fuc5 crypt cauth instruction
  −
// Clear bit 0x13 in cauth
  −
cauth(cauth_old & ~(1 << 0x13));
  −
  −
// Set the target port for memory transfers
  −
xtargets(0);
  −
  −
// Wait for all data loads/stores to finish
  −
xdwait();
  −
  −
// Wait for all code loads to finish
  −
xcwait();
  −
  −
// fuc5 crypt cxset instruction
  −
// The next 2 xfer instructions will be overridden
  −
// and target changes from DMA to crypto
  −
cxset(0x02);
  −
  −
// Transfer data to crypto register c0
  −
// This should clear any leftover data
  −
xdst(0, 0);
  −
  −
// Wait for all data loads/stores to finish
  −
xdwait();
  −
  −
// Clear all crypto registers, except c6 which is used for auth
  −
cxor(c0, c0);
  −
cmov(c1, c0);
  −
cmov(c2, c0);
  −
cmov(c3, c0);
  −
cmov(c4, c0);
  −
cmov(c5, c0);
  −
cmov(c7, c0);
  −
  −
// Clear TSEC_TEGRA_CTL_TKFI_KFUSE
  −
// This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40)
  −
*(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF;
  −
  −
// Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
  −
// This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40)
  −
*(u32 *)TSEC_SCP_CTL_PKEY |= 0x01;
  −
  −
u32 is_pkey_loaded = 0;
  −
  −
// Wait for TSEC_SCP_CTL_PKEY_LOADED
  −
while (!is_pkey_loaded)
  −
    is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02);
  −
  −
// Read data segment size from IO space
  −
u32 data_seg_size = *(u32 *)UC_CAPS;
  −
data_seg_size >>= 0x09;
  −
data_seg_size &= 0x1FF;
  −
data_seg_size <<= 0x08;
  −
  −
// Check stack bounds
  −
if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800))
  −
  exit();
  −
  −
// Decrypt and load Keygen stage
  −
load_keygen(key_buf, key_version, is_blob_dec);
  −
  −
// fuc5 crypt csigclr instruction
  −
// Clears the cauth signature
  −
csigclr();
  −
  −
// Clear all crypto registers
  −
cxor(c0, c0);
  −
cxor(c1, c1);
  −
cxor(c2, c2);
  −
cxor(c3, c3);
  −
cxor(c4, c4);
  −
cxor(c5, c5);
  −
cxor(c6, c6);
  −
cxor(c7, c7);
  −
  −
// Exit Authenticated Mode
  −
// This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40)
  −
*(u32 *)TSEC_SCP_CTL_AUTH_MODE = 0;
  −
  −
return;
  −
  −
==== load_keygen ====
  −
u32 res = 0;
  −
  −
u32 boot_base_addr = 0;
  −
u32 blob0_addr = 0;
  −
u32 blob0_size = *(u32 *)(key_buf + 0x70);
  −
  −
// Load blob0 code again
  −
read_code(boot_base_addr, blob0_addr, blob0_size);
  −
  −
// Generate "CODE_SIG_01" key into c4 crypto register
  −
gen_usr_key(0, 0);
  −
  −
// Encrypt buffer with c4
  −
u8 sig_key[0x10];
  −
enc_buf(sig_key, blob0_size);
  −
  −
u32 src_addr = boot_base_addr;
  −
u32 src_size = blob0_size;
  −
u32 iv_addr = sig_key;
  −
u32 dst_addr = sig_key;
  −
u32 mode = 0x02;  // AES-CMAC
  −
u32 version = 0;
  −
  −
// Do AES-CMAC over blob0 code
  −
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version);
  −
  −
// Compare the hashes
  −
if (memcmp(dst_addr, key_buf + 0x10, 0x10))
  −
{
  −
  res = 0xDEADBEEF;
  −
  return res;
  −
}
  −
  −
u32 blob1_size = *(u32 *)(key_buf + 0x74);
  −
  −
// Decrypt Keygen blob if needed
  −
if (!is_blob_dec)
  −
{
  −
    // Read Stage2's size from key buffer
  −
    u32 blob2_size = *(u32 *)(key_buf + 0x78);
  −
  −
    // Check stack bounds
  −
    if (*(u32 *)sp > blob2_size)
  −
    {
  −
      u32 boot_base_addr = 0;
  −
      u32 blob2_virt_addr = blob0_size + blob1_size;
  −
      u32 blob2_addr = blob2_virt_addr + 0x100;
  −
     
  −
      // Read Keygen encrypted blob
  −
      read_code(boot_base_addr, blob2_addr, blob2_size);
  −
  −
      // Generate "CODE_ENC_01" key into c4 crypt register
  −
      gen_usr_key(0x01, 0x01);
  −
     
  −
      u32 src_addr = boot_base_addr;
  −
      u32 src_size = blob2_size;
  −
      u32 iv_addr = key_buf + 0x40;
  −
      u32 dst_addr = boot_base_addr;
  −
      u32 mode = 0;  // AES-128-ECB
  −
      u32 version = 0;
  −
     
  −
      // Decrypt Keygen blob
  −
      do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version);
  −
     
  −
      // Upload the next code segment into Falcon's CODE region
  −
      bool use_secret = true;
  −
      upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret);
  −
  −
      // Clear out the decrypted blob
  −
      memset(boot_base_addr, 0, blob2_size);
  −
    }
  −
}
  −
  −
// fuc5 crypt cxset instruction
  −
// The next 2 xfer instructions will be overridden
  −
// and target changes from DMA to crypto
  −
cxset(0x02);
  −
  −
u32 crypt_reg_flag = 0x00060000;
  −
u32 blob2_hash_addr = key_buf + 0x30;
  −
  −
// Transfer data to crypto register c6
  −
xdst(0, (blob2_hash_addr | crypt_reg_flag));
  −
  −
// Wait for all data loads/stores to finish
  −
xdwait();
  −
  −
// Save previous cauth value
  −
u32 c_old = cauth_old;
  −
  −
// fuc5 crypt cauth instruction
  −
// Set auth_addr to blob2_virt_addr and auth_size to blob2_size
  −
cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10));
  −
  −
u32 hovi_key_addr = 0;
  −
  −
// Select next stage key
  −
if (key_version == 0x01) // Use HOVI_EKS_01
  −
  hovi_key_addr = key_buf + 0x50;
  −
else if (key_version == 0x02)         // Use HOVI_COMMON_01
  −
  hovi_key_addr = key_buf + 0x60;
  −
else if (key_version == 0x03)         // Use debug key (empty)
  −
  hovi_key_addr = key_buf + 0x00;
  −
else
  −
  res = 0xD0D0D0D0
  −
  −
// Jump to Keygen
  −
if (hovi_key_addr)
  −
  res = exec_keygen(hovi_key_addr, key_version);
  −
         
  −
// Clear out key data
  −
memset(key_buf, 0, 0x7C);
  −
  −
// fuc5 crypt cauth instruction
  −
// Restore previous cauth value
  −
cauth(c_old);
  −
  −
return res;
  −
  −
===== gen_usr_key =====
  −
This method takes '''type''' and '''mode''' as arguments and generates a key.
  −
u8 seed_buf[0x10];
  −
  −
// Read a 16 bytes seed based on supplied type
  −
/*
  −
    Type 0: "CODE_SIG_01" + null padding
  −
    Type 1: "CODE_ENC_01" + null padding
  −
*/
  −
get_seed(seed_buf, type);
  −
  −
// This will write the seed into crypto register c0
  −
crypt_store(0, seed_buf);
  −
  −
// fuc5 csecret instruction
  −
// Load selected secret into crypto register c1
  −
csecret(c1, 0x26);
  −
  −
// fuc5 ckeyreg instruction
  −
// Bind c1 register as the key for enc/dec operations
  −
ckeyreg(c1);
  −
  −
// fuc5 cenc instruction
  −
// Encrypt seed_buf (in c0) using keyreg value as key into c1
  −
cenc(c1, c0);
  −
  −
// fuc5 csigenc instruction
  −
// Encrypt c1 register with the auth signature stored in c6
  −
csigenc(c1, c1);
  −
  −
// Copy the result into c4 (will be used as key)
  −
cmov(c4, c1);
  −
  −
// Do key expansion (for decryption)
  −
if (mode != 0)
  −
    ckexp(c4, c4); // fuc5 ckexp instruction
  −
  −
return;
  −
  −
===== enc_buffer =====
  −
This method takes '''buf''' (a 16 bytes buffer) and '''size''' as arguments and encrypts the supplied buffer.
  −
// Set first 3 words to null
  −
*(u32 *)(buf + 0x00) = 0;
  −
*(u32 *)(buf + 0x04) = 0;
  −
*(u32 *)(buf + 0x08) = 0;
  −
  −
// Swap halves (b16, b32 and b16 again)
  −
hswap(size);
  −
  −
// Store the size as the last word
  −
*(u32 *)(buf + 0x0C) = size;
  −
  −
// This will write buf into crypto register c3
  −
crypt_store(0x03, buf);
  −
  −
// fuc5 ckeyreg instruction
  −
// Bind c4 register (from keygen) as the key for enc/dec operations
  −
ckeyreg(c4);
  −
  −
// fuc5 cenc instruction
  −
// Encrypt buf (in c3) using keyreg value as key into c5
  −
cenc(c5, c3);
  −
  −
// This will read into buf from crypto register c5
  −
crypt_load(0x05, buf);
  −
  −
return;
  −
  −
===== do_crypto =====
  −
This is the method responsible for all crypto operations performed during [[#KeygenLdr|KeygenLdr]]. It takes '''src_addr''', '''src_size''', '''iv_addr''', '''dst_addr''', '''mode''' and '''use_imem''' as arguments.
  −
// Check for invalid source data size
  −
if (!src_size || (src_size & 0x0F))
  −
  exit();
  −
  −
// Check for invalid source data address
  −
if (src_addr & 0x0F)
  −
  exit();
  −
  −
// Check for invalid destination data address
  −
if (dst_addr & 0x0F)
  −
  exit();
  −
  −
// Use IV if available
  −
if (iv_addr)
  −
{
  −
  // This will write the iv_addr into crypto register c5
  −
  crypt_store(0x05, iv_addr);
  −
}
  −
else
  −
{
  −
  // Clear c5 register (use null IV)
  −
  cxor(c5, c5);
  −
}
  −
  −
// Use key in c4
  −
ckeyreg(c4);
  −
  −
// AES-128-CBC decrypt
  −
if (mode == 0x00)
  −
{
  −
  // Create crypto script with 5 instructions
  −
  cs0begin(0x05);
  −
  −
  cxsin(c3);                  // Read 0x10 bytes from crypto stream into c3
  −
  cdec(c2, c3);                // Decrypt from c3 into c2
  −
  cxor(c5, c2);                // XOR c2 with c5 and store in c5
  −
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
  −
  cmov(c5, c3);                // Move c3 into c5
  −
}
  −
else if (mode == 0x01) // AES-128-CBC encrypt
  −
{
  −
  // Create crypto script with 4 instructions
  −
  cs0begin(0x04);
  −
  −
  cxsin(c3);                  // Read 0x10 bytes from crypto stream into c3
  −
  cxor(c3, c5);                // XOR c5 with c3 and store in c3
  −
  cenc(c5, c3);                // Encrypt from c3 into c5
  −
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
  −
}
  −
else if (mode == 0x02) // AES-CMAC
  −
{
  −
  // Create crypto script with 3 instructions
  −
  cs0begin(0x03);
  −
  −
  cxsin(c3);                  // Read 0x10 bytes from crypto stream into c3
  −
  cxor(c5, c3);                // XOR c5 with c3 and store in c3
  −
  cenc(c5, c5);                // Encrypt from c5 into c5
  −
}
  −
else if (mode == 0x03) // AES-128-ECB decrypt
  −
{
  −
  // Create crypto script with 3 instructions
  −
  cs0begin(0x03);
  −
  −
  cxsin(c3);                  // Read 0x10 bytes from crypto stream into c3
  −
  cdec(c5, c3);                // Decrypt from c3 into c5
  −
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
  −
}
  −
else if (mode == 0x04) // AES-128-ECB encrypt
  −
{
  −
  // Create crypto script with 3 instructions
  −
  cs0begin(0x03);
  −
  −
  cxsin(c3);                  // Read 0x10 bytes from crypto stream into c3
  −
  cenc(c5, c3);                // Encrypt from c3 into c5
  −
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
  −
}
  −
else
  −
  return;
  −
  −
// Main loop
  −
while (src_size > 0)
  −
{
  −
  u32 blk_count = (src_size >> 0x04);
  −
  −
  if (blk_count > 0x10)
  −
    blk_count = 0x10;
  −
 
  −
  // Check size align
  −
  if (blk_count & (blk_count - 0x01))
  −
    blk_count = 0x01;
  −
  −
  u32 blk_size = (blk_count << 0x04);
  −
 
  −
  u32 crypt_xfer_src = 0;
  −
  u32 crypt_xfer_dst = 0;
  −
 
  −
  if (block_size == 0x20)
  −
  {
  −
      crypt_xfer_src = (0x00030000 | src_addr);
  −
      crypt_xfer_dst = (0x00030000 | dst_addr);
  −
     
  −
      // Execute crypto script 2 times (1 for each block)
  −
      cs0exec(0x02);
  −
  }
  −
  if (block_size == 0x40)
  −
  {
  −
      crypt_xfer_src = (0x00040000 | src_addr);
  −
      crypt_xfer_dst = (0x00040000 | dst_addr);
  −
     
  −
      // Execute crypto script 4 times (1 for each block)
  −
      cs0exec(0x04);
  −
  }
  −
  if (block_size == 0x80)
  −
  {
  −
      crypt_xfer_src = (0x00050000 | src_addr);
  −
      crypt_xfer_dst = (0x00050000 | dst_addr);
  −
     
  −
      // Execute crypto script 8 times (1 for each block)
  −
      cs0exec(0x08);
  −
  }
  −
  if (block_size == 0x100)
  −
  {
  −
      crypt_xfer_src = (0x00060000 | src_addr);
  −
      crypt_xfer_dst = (0x00060000 | dst_addr);
  −
     
  −
      // Execute crypto script 16 times (1 for each block)
  −
      cs0exec(0x10);
  −
  }
  −
  else
  −
  {
  −
      crypt_xfer_src = (0x00020000 | src_addr);
  −
      crypt_xfer_dst = (0x00020000 | dst_addr);
  −
     
  −
      // Execute crypto script 1 time (1 for each block)
  −
      cs0exec(0x01);
  −
  −
      // Ensure proper block size
  −
      block_size = 0x10;
  −
  }
  −
  −
  // fuc5 crypt cxset instruction
  −
  // The next xfer instruction will be overridden
  −
  // and target changes from DMA to crypto input/output stream
  −
  if (use_imem)
  −
    cxset(0xA1);        // Flag 0xA0 is falcon imem <-> crypto input/output stream
  −
  else
  −
    cxset(0x21);        // Flag 0x20 is external mem <-> crypto input/output stream
  −
  −
  // Transfer data into the crypto input/output stream
  −
  xdst(crypt_xfer_src, crypt_xfer_src);
  −
 
  −
  // AES-CMAC only needs one more xfer instruction
  −
  if (mode == 0x02)
  −
  {
  −
      // fuc5 crypt cxset instruction
  −
      // The next xfer instruction will be overridden
  −
      // and target changes from DMA to crypto input/output stream
  −
      if (use_imem)
  −
        cxset(0xA1);    // Flag 0xA0 is falcon imem <-> crypto input/output stream
  −
      else
  −
        cxset(0x21);    // Flag 0x20 is external mem <-> crypto input/output stream
  −
  −
      // Wait for all data loads/stores to finish
  −
      xdwait();
  −
  }
  −
  else  // AES enc/dec needs 2 more xfer instructions
  −
  {
  −
      // fuc5 crypt cxset instruction
  −
      // The next 2 xfer instructions will be overridden
  −
      // and target changes from DMA to crypto input/output stream
  −
      if (use_imem)
  −
        cxset(0xA2);            // Flag 0xA0 is falcon imem <-> crypto input/output stream
  −
      else
  −
        cxset(0x22);            // Flag 0x20 is external mem <-> crypto input/output stream
  −
  −
      // Transfer data from the crypto input/output stream
  −
      xdld(crypt_xfer_dst, crypt_xfer_dst);
  −
  −
      // Wait for all data loads/stores to finish
  −
      xdwait();
  −
  −
      // Increase the destination address by block size
  −
      dst_addr += block_size;
  −
  }
  −
 
  −
  // Increase the source address by block size
  −
  src_addr += block_size;
  −
  −
  // Decrease the source size by block size
  −
  src_size -= block_size;
  −
}
  −
  −
// AES-CMAC result is in c5
  −
if (mode == 0x02)
  −
{
  −
    // This will read into dst_addr from crypto register c5
  −
    crypt_load(0x05, dst_addr);
  −
}
  −
  −
return;
  −
  −
== Keygen ==
  −
This stage is decrypted by [[#KeygenLdr|KeygenLdr]] using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC key.
  −
  −
== Loader ==
  −
This stage starts by authenticating and executing [[#KeygenLdr|KeygenLdr]] which in turn authenticates, decrypts and executes [[#Keygen|Keygen]] (both blobs remain unchanged from previous firmware versions).
  −
After the TSEC key has been generated, execution returns to this stage which then parses and executes [[#Payload|Payload]].
  −
  −
=== Main ===
  −
u8 key_data_buf[0x84];
  −
u8 tmp_key_data_buf[0x84];
  −
  −
// Read the key data from memory
  −
u32 key_data_addr = 0x300;
  −
u32 key_data_size = 0x84;
  −
read_code(key_data_buf, key_data_addr, key_data_size);
  −
  −
// Read the KeygenLdr blob from memory
  −
u32 boot_base_addr = 0;
  −
u32 blob1_addr = 0x400;
  −
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
read_code(boot_base_addr, blob1_addr, blob1_size);
  −
 
  −
// Upload the next code segment into Falcon's CODE region
  −
u32 blob1_virt_addr = 0x300;
  −
bool use_secret = true;
  −
upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
  −
  −
// Backup the key data
  −
memcpy(tmp_key_data_buf, key_data_buf, 0x84);
  −
  −
// Save previous cauth value
  −
u32 c_old = cauth_old;
  −
  −
// fuc5 crypt cauth instruction
  −
// Set auth_addr to 0x300 and auth_size to blob1_size
  −
cauth((blob1_size << 0x10) | (0x300 >> 0x08));
  −
  −
// fuc5 crypt cxset instruction
  −
// The next 2 xfer instructions will be overridden
  −
// and target changes from DMA to crypto
  −
cxset(0x02);
  −
  −
u32 crypt_reg_flag = 0x00060000;
  −
u32 blob1_hash_addr = tmp_key_data_buf + 0x20;
  −
  −
// Transfer data to crypto register c6
  −
xdst(0, (blob1_hash_addr | crypt_reg_flag));
  −
  −
// Wait for all data loads/stores to finish
  −
xdwait();
  −
  −
u32 key_version = 0x01;
  −
bool is_blob_dec = false;
  −
  −
// Jump to KeygenLdr
  −
u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec);
  −
  −
// Set boot finish magic on success
  −
if (keygenldr_res == 0)
  −
  keygenldr_res = 0xB0B0B0B0
  −
     
  −
// Write result to FALCON_SCRATCH1
  −
*(u32 *)FALCON_SCRATCH1 = keygenldr_res;
  −
  −
if (keygenldr_res != 0xB0B0B0B0)
  −
  return keygenldr_res;
  −
  −
// fuc5 crypt cauth instruction
  −
// Restore previous cauth value
  −
cauth(c_old);
  −
  −
u8 flcn_hdr_buf[0x18];
  −
u8 flcn_os_hdr_buf[0x10];
  −
  −
blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
  −
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
  −
  −
// Read the Payload blob's Falcon header from memory
  −
u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size);
  −
read_code(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18);
  −
  −
blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
blob2_size = *(u32 *)(key_data_buf + 0x78);
  −
blob0_size = *(u32 *)(key_data_buf + 0x70);
  −
u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C);
  −
  −
// Read the Payload blob's Falcon OS header from memory
  −
u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size);
  −
read_code(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10);
  −
  −
blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
blob2_size = *(u32 *)(key_data_buf + 0x78);
  −
blob0_size = *(u32 *)(key_data_buf + 0x70);
  −
u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
  −
u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
  −
  −
// Read the Payload blob's Falcon OS image from memory
  −
u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size);
  −
read_code(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size);
  −
  −
// Upload the Payload's Falcon OS image boot stub code segment into Falcon's CODE region
  −
u32 blob4_flcn_os_boot_virt_addr = 0;
  −
u32 blob4_flcn_os_boot_size = 0x100;
  −
use_secret = false;
  −
upload_code(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret);
  −
  −
flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
  −
  −
// Upload the Payload blob's Falcon OS encrypted image code segment into Falcon's CODE region
  −
u32 blob4_flcn_os_img_virt_addr = 0x100;
  −
u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100);
  −
use_secret = true;
  −
upload_code(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret);
  −
  −
// Wait for all code loads to finish
  −
xcwait();
  −
  −
blob1_size = *(u32 *)(key_data_buf + 0x74);
  −
blob2_size = *(u32 *)(key_data_buf + 0x78);
  −
blob0_size = *(u32 *)(key_data_buf + 0x70);
  −
flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
  −
u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08);
  −
  −
// Read the Payload blob's falcon OS image's hash from memory
  −
u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size);
  −
read_code(0, blob4_flcn_os_img_hash_addr, 0x10);
  −
  −
// Read data segment size from IO space
  −
u32 data_seg_size = *(u32 *)UC_CAPS;
  −
data_seg_size >>= 0x03;
  −
data_seg_size &= 0x3FC0;
  −
  −
u32 data_addr = 0x10;
  −
  −
// Clear all data except the first 0x10 bytes (Payload blob's Falcon OS image's hash)
  −
for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++)
  −
{
  −
  *(u32 *)(data_addr) = 0;
  −
  data_addr += 0x04;
  −
}
  −
  −
// Clear all crypto registers
  −
cxor(c0, c0);
  −
cxor(c1, c1);
  −
cxor(c2, c2);
  −
cxor(c3, c3);
  −
cxor(c4, c4);
  −
cxor(c5, c5);
  −
cxor(c6, c6);
  −
cxor(c7, c7);
  −
  −
// fuc5 crypt csigclr instruction
  −
// Clears the cauth signature
  −
csigclr();
  −
  −
// Jump to Payload
  −
exec_payload();
  −
  −
return 0xB0B0B0B0;
  −
  −
== Payload ==
  −
This stage prepares the stack then authenticates, decrypts and executes the Payload blob's Falcon OS image.
  −
  −
=== Main ===
  −
// Read data segment size from IO space
  −
u32 data_seg_size = *(u32 *)UC_CAPS;
  −
data_seg_size >>= 0x01;
  −
data_seg_size &= 0xFF00;
  −
  −
// Set the stack pointer
  −
*(u32 *)sp = data_seg_size;
  −
  −
// Jump to the Payload blob's Falcon OS image boot stub
  −
exec_flcn_os_boot();
  −
  −
// Halt execution
  −
exit();
  −
  −
return;
  −
  −
==== exec_flcn_os_boot ====
  −
// Read the transfer base address from IO space
  −
u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE;
  −
  −
// Copy transfer base address to data memory
  −
u32 scratch_data_addr = 0x300;
  −
*(u32 *)scratch_data_addr = xfer_ext_base_addr;
  −
  −
// Set the transfer base address
  −
xcbase(xfer_ext_base_addr);
  −
  −
// fuc5 crypt cxset instruction
  −
// The next xfer instruction will be overridden
  −
// and target changes from DMA to crypto
  −
cxset(0x01);
  −
  −
u32 crypt_reg_flag = 0x00060000;
  −
u32 blob4_flcn_os_img_hash_addr = 0;
  −
  −
// Transfer data to crypto register c6
  −
xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag));
  −
  −
// fuc5 crypt cxset instruction
  −
// The next xfer instruction will be overridden
  −
// and target changes from DMA to crypto
  −
cxset(0x01);
  −
  −
// Wait for all data loads/stores to finish
  −
xdwait();
  −
  −
cmov(c7, c6);
  −
cxor(c7, c7);
  −
  −
// fuc5 crypt cauth instruction
  −
// Set auth_addr to 0x100, auth_size to 0x1300,
  −
// bit 16 (is_secret) and bit 17 (is_encrypted)
  −
cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08));
  −
  −
// Clear interrupt flags
  −
*(u8 *)flags_ie0 = 0;
  −
*(u8 *)flags_ie1 = 0;
  −
  −
// Jump to the Payload blob's Falcon OS image
  −
exec_flcn_os_img();
  −
  −
return 0x0F0F0F0F;
  −
  −
== Key data ==
  −
Small buffer stored after the [[#Boot|Boot]] blob and used across all stages.
  −
  −
{| class="wikitable" border="1"
  −
!  Offset
  −
!  Size
  −
!  Description
  −
|-
  −
| 0x00
  −
| 0x10
  −
| Debug key (empty)
  −
|-
  −
| 0x10
  −
| 0x10
  −
| blob0 ([[#Boot|Boot]]) auth hash
  −
|-
  −
| 0x20
  −
| 0x10
  −
| blob1 ([[#KeygenLdr|KeygenLdr]]) auth hash
  −
|-
  −
| 0x30
  −
| 0x10
  −
| blob2 ([[#Keygen|Keygen]]) auth hash
  −
|-
  −
| 0x40
  −
| 0x10
  −
| blob2 ([[#Keygen|Keygen]]) AES IV
  −
|-
  −
| 0x50
  −
| 0x10
  −
| HOVI EKS seed
  −
|-
  −
| 0x60
  −
| 0x10
  −
| HOVI COMMON seed
  −
|-
  −
| 0x70
  −
| 0x04
  −
| blob0 ([[#Boot|Boot]]) size
  −
|-
  −
| 0x74
  −
| 0x04
  −
| blob1 ([[#KeygenLdr|KeygenLdr]]) size
  −
|-
  −
| 0x78
  −
| 0x04
  −
| blob2 ([[#Keygen|Keygen]]) size
  −
|-
  −
| 0x7C
  −
| 0x04
  −
| [6.2.0+] blob3 ([[#Loader|Loader]]) size
  −
|-
  −
| 0x80
  −
| 0x04
  −
| [6.2.0+] blob4 ([[#Payload|Payload]]) size
   
|}
 
|}