Difference between revisions of "Super Mario 3D All-Stars"

From Nintendo Switch Brew
Jump to navigation Jump to search
Line 63: Line 63:
  
 
The u64 for [[JIT_services#GenerateCode|GenerateCode]] is the type: 1-4 are valid. Type1 is used first, then type2.
 
The u64 for [[JIT_services#GenerateCode|GenerateCode]] is the type: 1-4 are valid. Type1 is used first, then type2.
 +
 +
The u32 for the input Struct32 size is ignored by the plugin.
  
 
* Type1: Struct32 and InBuffer are unused. Generates the entry code which can be called for running the rest of the code in the CodeMemory. After the generated code finishes setup, it jumps to x0.
 
* Type1: Struct32 and InBuffer are unused. Generates the entry code which can be called for running the rest of the code in the CodeMemory. After the generated code finishes setup, it jumps to x0.
 
* Type2: Struct32 and InBuffer are unused. Generates the code for returning from CodeMemory, which is used by the rest of the generated code.
 
* Type2: Struct32 and InBuffer are unused. Generates the code for returning from CodeMemory, which is used by the rest of the generated code.
* Type3: ...
+
* Type3: The emulator passes the 0x8-bytes from InBuffer+0 as the input Struct32, however the plugin doesn't use the Struct32. The emulator passes InBuffer_size=0x8C00048 and OutBuffer_size=0x2900008. This generates code for the MIPS code specified in the InBuffer. The InBuffer contains array data etc. The InBuffer can contain multiple blocks of code, which are generally individual MIPS functions. The MIPS instructions are big-endian.
* Type4: ...
+
* Type4: 0x20-bytes are passed for the input Struct32: u32 +0 = emu_pc_addr, u32 +4 = set by emulator but unused by the plugin, u32 +0x18 = instruction_count (which determines the InBuffer size), the rest is unused / overwritten by the plugin. This generates code for the MIPS code specified in the InBuffer. InBuffer+0 is the u32s for the big-endian MIPS instructions. The OutBuffer is 0x2000C-bytes:
 +
** +0x0 is an array of u32s with the count from u32 +0x20004.
 +
** +0x10000 is an array of u32s with the count from u32 +0x20004.
 +
** The 3 u32s at +0x20000 are the same as OutBuffer+0x0 with type1/type2 (except the last two fields can be non-zero).
  
 
0xC-bytes are copied to the OutBuffer with type1/type2, these come from workmem. These 3 u32s are left at all-zero, except for +0 which is the generated_code_size (which is then copied to the output CodeRange size).
 
0xC-bytes are copied to the OutBuffer with type1/type2, these come from workmem. These 3 u32s are left at all-zero, except for +0 which is the generated_code_size (which is then copied to the output CodeRange size).

Revision as of 00:30, 29 October 2020

This page documents the Super Mario 3D All-Stars (SM3DAS) game.

The initial menu is the Stardust launcher, which has the base ProgramId 010049900F546000. Each game launched from here has a different ProgramIndex, therefore each ProgramId differs: 0x1 (010049900F546001) SuperMario64, 0x2 (010049900F546002) SuperMarioSunshine, 0x3 (010049900F546003) SuperMarioGalaxy.

The launcher launches each game by using ExecuteProgram with ProgramIndex={above values}, with 0x10-byte parameter-data: {+0x0 = LanguageCode selected in the launcher for this game, +0x8/+0xC = floats loaded from a fixed-data array specific for each game, which games can use with SetAudioDeviceOutputVolume}. Each game returns to the launcher by using ExecuteProgram with ProgramIndex=0, no parameter-data is passed to the launcher.

Each game uses different methods of emulation.

These games use Vulkan for rendering.

These games save PlayReports with prepo, the fields include "num_stars" etc.

The pause-menu when pressing the '-' button in each game uses the Offline web-applet with WebSession.

NPDM

This section documents the NPDM for the launcher and each game.

  • Launcher: Roughly the same as most Switch games' NPDM.
  • SuperMario64: Locked down since this uses JIT. Compared to the Launcher NPDM (besides ProgramId):
  • SuperMarioSunshine: Same as Launcher (besides ProgramId), except flag OptimizeMemoryAllocation is set.
  • SuperMarioGalaxy: Same as Launcher (besides ProgramId), except flags is 0x4: Is64BitInstruction=0(AArch32) and ProcessAddressSpace=0x2.

SuperMario64

This is a Nintendo 64 emulator. This uses JIT for running the emulated executable. RomFs also contains an AOT NRO. A NRO does get loaded, however it's not used other than that (no symbols from the NRO are resolved).

At the time of release, this was the very first title to use JIT on retail.

The ROMIMAGE .bin in RomFs is identical to the Shindou region N64 ROM. Patches are applied at runtime with the config/lua files.

The LanguageCode is loaded from the launch-parameter passed by the launcher, if not available it will fallback to the output from GetDesiredLanguage. This is used to select the <language> to load from RomFs "/Message/", the data from there is then used for patching the ROM. Note that the .lua file runs n64InitMessageData(); from the GameBegin() function.

The ROMIMAGE .bin in RomFs can be replaced with other data (an unofficial image for example) when the config files are adjusted, however note that in some cases a hang may occur during the loading screen.

RomFs contains the following:

  • "/Pipeline.cache", "/shader_p1_frag.spv", "/shader_p1_vert.spv", "/shader_vulkan_frag.spv", "/shader_vulkan_vert.spv"
  • "/Message/<language>/" contains:
    • "Messages.bin", "UI_Font8.bin", "UI_Font16.bin", "UI_Font16_code2.bin", "UI_FontS88.bin".
  • "/.nrr/" contains:
  • "/nro/" contains:
    • "EmuSystemJITPlugin.nro": The NRO for the JitPlugin.
    • "NROBuilder.nro": AOT NRO.
    • "05_UNSMJ3.002.nro": Same as "NROBuilder.nro".
    • "/rom/": This contains the ROM sub-directory, in this case that dir-name is "Stardust_JP" which contains the following:
      • "Textures/texture_pack.cpio": Standard (?) .cpio archive containing textures.
      • "00_UNSMJ3.002.meta": Contains json metadata for the other files in this directory, etc.
      • "01_UNSMJ3.002.bin": This is the ROMIMAGE.
      • "02_UNSMJ3.002.cfg": Configuration json file, ROMCONFIG.
      • "03_UNSMJ3.002.pcb": This is the "PRECMP" file referenced by the .meta.
      • "04_UNSMJ3.002.nrr": Unused NRR which is the same as "/.nrr/04_UNSMJ3.002.nrr", except the Certification and ApplicationId are all-zero.
      • "05_UNSMJ3.002.nro": Identical to "/nro/05_UNSMJ3.002.nro".
      • "06_UNSMJ3.002.lua": This is the "ROMPATCH" Lua file referenced by the .meta.
      • "07_UNSMJ3.002.ppl": This is the "PIPELINE" file referenced by the .meta.

EmuSystemJITPlugin

This section documents the JIT plugin.

First, Control is used with a 0xEB0-byte struct for the InBuffer, and cmd in_u64=0. The OutBuffer is unused. This does initialization, and copies the input struct to workmem+0x0.

The u64 for GenerateCode is the type: 1-4 are valid. Type1 is used first, then type2.

The u32 for the input Struct32 size is ignored by the plugin.

  • Type1: Struct32 and InBuffer are unused. Generates the entry code which can be called for running the rest of the code in the CodeMemory. After the generated code finishes setup, it jumps to x0.
  • Type2: Struct32 and InBuffer are unused. Generates the code for returning from CodeMemory, which is used by the rest of the generated code.
  • Type3: The emulator passes the 0x8-bytes from InBuffer+0 as the input Struct32, however the plugin doesn't use the Struct32. The emulator passes InBuffer_size=0x8C00048 and OutBuffer_size=0x2900008. This generates code for the MIPS code specified in the InBuffer. The InBuffer contains array data etc. The InBuffer can contain multiple blocks of code, which are generally individual MIPS functions. The MIPS instructions are big-endian.
  • Type4: 0x20-bytes are passed for the input Struct32: u32 +0 = emu_pc_addr, u32 +4 = set by emulator but unused by the plugin, u32 +0x18 = instruction_count (which determines the InBuffer size), the rest is unused / overwritten by the plugin. This generates code for the MIPS code specified in the InBuffer. InBuffer+0 is the u32s for the big-endian MIPS instructions. The OutBuffer is 0x2000C-bytes:
    • +0x0 is an array of u32s with the count from u32 +0x20004.
    • +0x10000 is an array of u32s with the count from u32 +0x20004.
    • The 3 u32s at +0x20000 are the same as OutBuffer+0x0 with type1/type2 (except the last two fields can be non-zero).

0xC-bytes are copied to the OutBuffer with type1/type2, these come from workmem. These 3 u32s are left at all-zero, except for +0 which is the generated_code_size (which is then copied to the output CodeRange size).

SuperMarioSunshine

This is a Nintendo Gamecube emulator. The emulator (which is the main-codebin) name is "Hagi". This uses an AOT NRO for running the emulated executable.

Since this uses AOT, attempting to run a different .dol with this emulator is equivalent to attempting to run an emulator with an executable where .text (code) is the from the original executable, while everything else is from the other executable.

This emulator supports arguments with argc/argv, when launched officially zero arguments are passed for this (unless SetProgramArgument is used manually prior to launching). The emulator will also load arguments from RomFs "/default_cmd.txt" when argc==1, otherwise it loads arguments from a filepath loaded elsewhere. Hence, when not launched with arguments with an official launch, "/default_cmd.txt" is not used. Some of the supported arguments are:

This emulator uses various hashes, SHA-1 is used for this.

This supports loading Bios from a file where the path is determined using the specified LanguageCode, when config flags "Emulate" and "LoadBios" are true, however with the MarioSunshine config the latter config flag is false.

RomFs contains the following:

  • "/hagi.config": Emulator json configuration.
  • "/hagi-override.config": Emulator json configuration.
  • "/rom.json": ROM json configuration, contains the following fields:
    • "UID": Game-name.
    • "DolHash": Hash.
    • "ROM": An array of strings for the absolute file path for the ROM. In this case, it only contains the following: "rom:/MarioSunshine/Super_Mario_Sunshine_Stardust-trimmed.gcm".
  • "/.nrr/Hagi.nrr": NRR for the AOT NRO.
  • "/MarioSunshine/": This contains the following:
    • "Super_Mario_Sunshine_Stardust-trimmed.gcm": This is the .gcm image mentioned above.
    • "Super_Mario_Sunshine_Stardust-trimmed.hash": Contains json configuration for various hashes.
  • "/data/": This contains the following:
    • "database/": This contains the following:
      • "config/MarioSunshine.config": This contains game-specific emulator json configuration.
      • "hagi/MarioSunshine.json": This contains ROM json configuration. IDs, names, etc. This also contains various hashes, including a duplicate of the above .hash file.
      • "pip/MarioSunshine/pipelineDB.pip"
      • "vulkan/MarioSunshine/B1317A6632265CF763766CF6339AC8D1.cache": This is the .cache file mentioned in #Savedata.
    • "gekko/MarioSunshine/nx/MarioSunshine.nrolz": This is the AOT NRO. LZ4 compressed, first 4-bytes is the big-endian decompressed size, then the compressed data follows.
    • "lazy_texture_replace/MarioSunshine": Contains PNG textures.
    • "saves/MarioSunshine/A.sav": Savedata. Presumably used to create the initial savedata file?
    • "texture_replace/": Contains "MarioSunshine.har" and "MarioSunshine.hix".
    • "video_replace/MarioSunshine/": Contains MP4 videos.

AOT NRO

This section documents the AOT NRO. There are only two symbols from NRO which the main-codebin does lookup for and uses: "SetGekkoMemoryPointer" and "GetStatifierInfo".

During initialization, nn::os::AllocateAddressRegion is used with size 0x100200000. Then nn::os::AllocateMemoryPages is used (which uses svcMapPhysicalMemory):

  • base+0 size 0x1000 is allocated.
  • base+0x80000000 size 0x1800000 is allocated.
  • base+0xE0000000 size 0x4000 is allocated.
  • base+0xFFF00000 size 0x200000 is allocated.

Initially SetGekkoMemoryPointer is called with base+0x80000000, however at some point it's called (?) with base+0.

The AOT NRO does all main-memory accesses by accessing {global ptr set by SetGekkoMemoryPointer}+{ppc_addr}. Therefore, above base+0 == ppc_addr 0x0. Since svcMapPhysicalMemory is used above, attempting to access any PPC-addrs not in the allocated regions above will result in the emulator crashing due to accessing unmapped memory - accessing non-PPC emulator data with invalid PPC-addrs is not possible. These crashes may happen when attempting to run a different .dol with the emulator as previously mentioned.

GetStatifierInfo takes an input string param and an output u64* param. This returns a bool: 0 = error, 1 = success. The NRO compares the input string with various strings to determine an array index, returning 0 if there's no match. Otherwise, the u64 data from the located array entry is copied to the output u64.

  • "GET_FUNCTION_INFO": Ptr to a table, where each entry is 0x18-bytes. Structure: +0x0 = ppc_code_addr, +0x8 = nro_code_addr, +0x10 = string ptr (normally "").
  • "GET_FUNCTION_INFO_SIZE" Ptr to the size of the FUNCTION_INFO table, in entries.
  • ...

Each func in the NRO listed in the above table (which are the AOT funcs) is called with x0={state ptr}, where state contains:

  • +0x0: u32 array for the PPC GPRs.
  • ...

SuperMarioGalaxy

This appears to use an emulator similar to the one used by #SuperMarioSunshine. The code/data for the MarioGalaxy executable is included directly in the main-codebin.

RomFs contains the following:

  • "/hagi.config": This is mostly the same as the "/hagi.config" for #SuperMarioSunshine, except with various config fields adjusted.
  • "/data/": This contains the following:
    • "database/": This contains "pip/pipelineDB.pip" and "vulkan/FDBD9F0C3FEA5778E10FFFA74093E0B8.cache".
    • "dsp/": This contains "drom.bin" and "irom.bin".
    • "ondemand_texture_replace/MarioGalaxy/": This contains PNG textures.
    • "texture_replace/": This contains "MarioGalaxy.har", "MarioGalaxy.hix", "MarioGalaxy_<language>.har", "MarioGalaxy_<language>.hix", "MarioGalaxy_Sub.har", "MarioGalaxy_Sub.hix".
    • "video_replace/MarioGalaxy/MovieData/": This contains MP4 videos.
  • The rest is the MarioGalaxy game assets stored directly in RomFs.

Versions

This section documents the game-update changes.

v1.0.1

In ExeFs, the only NPDM change was the usual ACID pubkey/signature update. The only other ExeFs change, was that the main-codebin was updated only for SuperMarioSunshine/SuperMarioGalaxy.

RomFs changes:

  • Launcher: Not updated.
  • SuperMario64: Both NRRs were updated, pubkey/signature was updated. No other files were updated.
  • SuperMarioSunshine: Only "/.nrr/Hagi.nrr" was updated, same as above.
  • SuperMarioGalaxy:
    • "/data/texture_replace/": Various files here were updated.
    • "/<language>/LayoutData/Font.arc": Updated.
    • "/LayoutData/CameraInfo.arc", "/LayoutData/IconAButton.arc", "/StationedData/GDDR3.arc", "/StationedData/GDDR3.zst": Updated.

Savedata

The savedata contains the following:

  • "/PlayReport/account.prsav"
  • "/StardustLauncher/game_data.sav"
  • "/Mario64/Mario64.sav": The raw N64 savedata.
  • "/MarioSunshine/": This contains the following data, for MarioSunshine:
    • "gekko/log/", "gekko/trace/", and "hanafuda/": Empty directories.
    • "A.sav": The memory card image. The first 4-bytes are the big-endian decompressed size, followed by the LZ4 compressed data.
    • "B.raw": Uncompressed raw version of the memory card image. All-zeros, since it doesn't seem to be used after creation? This normally doesn't exist: this only exists if the application had argv parameter "--card-uncompressed" passed.
    • "B1317A6632265CF763766CF6339AC8D1.cache": This is probably graphics pipeline related?(RomFs has an identical file)
  • "/MarioGalaxy/GameData.bin": The savedata for SuperMarioGalaxy.