Line 6:
Line 6:
== Initialization ==
== Initialization ==
During this stage several clocks are programmed.
During this stage several clocks are programmed.
−
// Program the HOST1X clock and resets
+
<pre>
−
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
+
// Program the HOST1X clock and resets
−
enable_host1x_clkrst();
+
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
+
enable_host1x_clkrst();
−
// Program the TSEC clock and resets
+
// Program the TSEC clock and resets
−
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
+
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
−
enable_tsec_clkrst();
+
enable_tsec_clkrst();
−
// Program the SOR_SAFE clock and resets
+
// Program the SOR_SAFE clock and resets
−
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
+
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
−
enable_sor_safe_clkrst();
+
enable_sor_safe_clkrst();
−
// Program the SOR0 clock and resets
+
// Program the SOR0 clock and resets
−
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
+
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
−
enable_sor0_clkrst();
+
enable_sor0_clkrst();
−
// Program the SOR1 clock and resets
+
// Program the SOR1 clock and resets
−
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
+
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
−
enable_sor1_clkrst();
+
enable_sor1_clkrst();
−
// Program the KFUSE clock resets
+
// Program the KFUSE clock resets
−
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
+
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
−
enable_kfuse_clkrst();
+
enable_kfuse_clkrst();
+
</pre>
== Configuration ==
== Configuration ==
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
−
// Clear the Falcon DMA control register
+
<pre>
−
*(u32 *)FALCON_DMACTL = 0;
+
// Clear the Falcon DMA control register
+
*(u32 *)FALCON_DMACTL = 0;
−
// Enable Falcon IRQs
+
// Enable Falcon IRQs
−
*(u32 *)FALCON_IRQMSET = 0xFFF2;
+
*(u32 *)FALCON_IRQMSET = 0xFFF2;
−
// Enable Falcon IRQs
+
// Enable Falcon IRQs
−
*(u32 *)FALCON_IRQDEST = 0xFFF0;
+
*(u32 *)FALCON_IRQDEST = 0xFFF0;
−
// Enable Falcon interfaces
+
// Enable Falcon interfaces
−
*(u32 *)FALCON_ITFEN = 0x03;
+
*(u32 *)FALCON_ITFEN = 0x03;
−
// Wait for Falcon's DMA engine to be idle
+
// Wait for Falcon's DMA engine to be idle
−
wait_flcn_dma_idle();
+
wait_flcn_dma_idle();
+
</pre>
== Firmware loading ==
== Firmware loading ==
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
−
// Set DMA transfer base address to 0x40011900 >> 0x08
+
<pre>
−
*(u32 *)FALCON_DMATRFBASE = 0x400119;
+
// Set DMA transfer base address to 0x40011900 >> 0x08
+
*(u32 *)FALCON_DMATRFBASE = 0x400119;
−
u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM
+
u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM
−
u32 dst_offset = 0;
+
u32 dst_offset = 0;
−
u32 src_offset = 0;
+
u32 src_offset = 0;
−
// Load code into Falcon (0x100 bytes at a time)
+
// Load code into Falcon (0x100 bytes at a time)
−
while (src_offset < 0xF00)
+
while (src_offset < 0xF00)
−
{
+
{
−
flcn_load_firm(trf_mode, src_offset, dst_offset);
+
flcn_load_firm(trf_mode, src_offset, dst_offset);
−
src_offset += 0x100;
+
src_offset += 0x100;
−
dst_offset += 0x100;
+
dst_offset += 0x100;
−
}
+
}
+
</pre>
[6.2.0+] The transfer base address and size of the Falcon firmware code changed.
[6.2.0+] The transfer base address and size of the Falcon firmware code changed.
−
// Set DMA transfer base address to 0x40010E00 >> 0x08
+
<pre>
−
*(u32 *)FALCON_DMATRFBASE = 0x40010E;
+
// Set DMA transfer base address to 0x40010E00 >> 0x08
+
*(u32 *)FALCON_DMATRFBASE = 0x40010E;
−
u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM
+
u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM
−
u32 dst_offset = 0;
+
u32 dst_offset = 0;
−
u32 src_offset = 0;
+
u32 src_offset = 0;
−
// Load code into Falcon (0x100 bytes at a time)
+
// Load code into Falcon (0x100 bytes at a time)
−
while (src_offset < 0x2900)
+
while (src_offset < 0x2900)
−
{
+
{
−
flcn_load_firm(trf_mode, src_offset, dst_offset);
+
flcn_load_firm(trf_mode, src_offset, dst_offset);
−
src_offset += 0x100;
+
src_offset += 0x100;
−
dst_offset += 0x100;
+
dst_offset += 0x100;
−
}
+
}
+
</pre>
== Firmware booting ==
== Firmware booting ==
Falcon is booted up and the first bootloader waits for it to finish.
Falcon is booted up and the first bootloader waits for it to finish.
−
// Set magic value in host1x scratch space
+
// Set magic value in host1x scratch space
−
*(u32 *)0x50003300 = 0x34C2E1DA;
+
*(u32 *)0x50003300 = 0x34C2E1DA;
−
// Clear Falcon scratch1 MMIO
+
// Clear Falcon scratch1 MMIO
−
*(u32 *)FALCON_SCRATCH1 = 0;
+
*(u32 *)FALCON_SCRATCH1 = 0;
−
// Set Falcon boot key version in scratch0 MMIO
+
// Set Falcon boot key version in scratch0 MMIO
−
*(u32 *)FALCON_SCRATCH0 = 0x01;
+
*(u32 *)FALCON_SCRATCH0 = 0x01;
−
// Set Falcon's boot vector address
+
// Set Falcon's boot vector address
−
*(u32 *)FALCON_BOOTVEC = 0;
+
*(u32 *)FALCON_BOOTVEC = 0;
−
// Signal Falcon's CPU
+
// Signal Falcon's CPU
−
*(u32 *)FALCON_CPUCTL = 0x02;
+
*(u32 *)FALCON_CPUCTL = 0x02;
−
// Wait for Falcon's DMA engine to be idle
+
// Wait for Falcon's DMA engine to be idle
−
wait_flcn_dma_idle();
+
wait_flcn_dma_idle();
−
u32 boot_res = 0;
+
u32 boot_res = 0;
−
// The bootloader allows the TSEC two seconds from this point to do its job
+
// The bootloader allows the TSEC two seconds from this point to do its job
−
u32 maximum_time = read_timer() + 2000000;
+
u32 maximum_time = read_timer() + 2000000;
−
while (!boot_res)
+
while (!boot_res)
−
{
+
{
−
// Read boot result from scratch1 MMIO
+
// Read boot result from scratch1 MMIO
−
boot_res = *(u32 *)FALCON_SCRATCH1;
+
boot_res = *(u32 *)FALCON_SCRATCH1;
−
// Read from TIMERUS_CNTR_1US (microseconds from boot)
+
// Read from TIMERUS_CNTR_1US (microseconds from boot)
−
u32 current_time = read_timer();
+
u32 current_time = read_timer();
−
// Booting is taking too long
+
// Booting is taking too long
−
if (current_time > maximum_time)
+
if (current_time > maximum_time)
−
panic();
+
panic();
−
}
+
}
−
// Invalid boot result was returned
+
// Invalid boot result was returned
−
if (boot_res != 0xB0B0B0B0)
+
if (boot_res != 0xB0B0B0B0)
−
panic();
+
panic();
+
</pre>
[6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.
[6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.
−
// Set magic value in host1x scratch space
+
<pre>
−
*(u32 *)0x50003300 = 0x34C2E1DA;
+
// Set magic value in host1x scratch space
+
*(u32 *)0x50003300 = 0x34C2E1DA;
−
// Clear Falcon scratch1 MMIO
+
// Clear Falcon scratch1 MMIO
−
*(u32 *)FALCON_SCRATCH1 = 0;
+
*(u32 *)FALCON_SCRATCH1 = 0;
−
// Set Falcon boot key version in scratch0 MMIO
+
// Set Falcon boot key version in scratch0 MMIO
−
*(u32 *)FALCON_SCRATCH0 = 0x01;
+
*(u32 *)FALCON_SCRATCH0 = 0x01;
−
// Set Falcon's boot vector address
+
// Set Falcon's boot vector address
−
*(u32 *)FALCON_BOOTVEC = 0;
+
*(u32 *)FALCON_BOOTVEC = 0;
−
// Signal Falcon's CPU
+
// Signal Falcon's CPU
−
*(u32 *)FALCON_CPUCTL = 0x02;
+
*(u32 *)FALCON_CPUCTL = 0x02;
−
// Infinite loop
+
// Infinite loop
−
deadlock();
+
while (1);
+
</pre>
== TSEC key generation ==
== TSEC key generation ==
The TSEC key is generated by reading SOR1 registers modified by the Falcon CPU.
The TSEC key is generated by reading SOR1 registers modified by the Falcon CPU.
−
// Clear magic value in host1x scratch space
+
<pre>
−
*(u32 *)0x50003300 = 0;
+
// Clear magic value in host1x scratch space
+
*(u32 *)0x50003300 = 0;
−
// Read TSEC key
+
// Read TSEC key
−
u32 tsec_key[4];
+
u32 tsec_key[4];
−
tsec_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB;
+
tsec_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB;
−
tsec_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB;
+
tsec_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB;
−
tsec_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB;
+
tsec_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB;
−
tsec_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB;
+
tsec_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB;
−
// Clear SOR1 registers
+
// Clear SOR1 registers
−
*(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0;
+
*(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0;
−
*(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0;
+
*(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0;
−
*(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0;
+
*(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0;
−
*(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0;
+
*(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0;
−
if (out_size < 0x10)
+
if (out_size < 0x10)
−
out_size = 0x10;
+
out_size = 0x10;
−
// Copy back the TSEC key
+
// Copy back the TSEC key
−
memcpy(out_buf, tsec_key, out_size);
+
memcpy(out_buf, tsec_key, out_size);
+
</pre>
[6.2.0+] This is now done inside an encrypted TSEC payload.
[6.2.0+] This is now done inside an encrypted TSEC payload.
Line 169:
Line 182:
== Cleanup ==
== Cleanup ==
Clocks and resets are disabled before returning.
Clocks and resets are disabled before returning.
−
// Deprogram KFUSE clock and resets
+
<pre>
−
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
+
// Deprogram KFUSE clock and resets
−
disable_kfuse_clkrst();
+
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
−
+
disable_kfuse_clkrst();
−
// Deprogram SOR1 clock and resets
−
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
−
disable_sor1_clkrst();
−
// Deprogram SOR0 clock and resets
+
// Deprogram SOR1 clock and resets
−
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
+
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
−
disable_sor0_clkrst();
+
disable_sor1_clkrst();
−
// Deprogram SOR_SAFE clock and resets
+
// Deprogram SOR0 clock and resets
−
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
+
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
−
disable_sor_safe_clkrst();
+
disable_sor0_clkrst();
−
// Deprogram TSEC clock and resets
+
// Deprogram SOR_SAFE clock and resets
−
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
+
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
−
disable_tsec_clkrst();
+
disable_sor_safe_clkrst();
−
// Deprogram HOST1X clock and resets
+
// Deprogram TSEC clock and resets
−
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
+
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
−
disable_host1x_clkrst();
+
disable_tsec_clkrst();
−
return;
+
// Deprogram HOST1X clock and resets
+
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
+
disable_host1x_clkrst();
+
</pre>
= TSEC Firmware =
= TSEC Firmware =
Line 215:
Line 228:
=== Initialization ===
=== Initialization ===
Falcon sets up it's own stack pointer.
Falcon sets up it's own stack pointer.
−
// Read data segment size from IO space
+
<pre>
−
u32 data_seg_size = *(u32 *)UC_CAPS;
+
// Read data segment size from IO space
−
data_seg_size >>= 0x09;
+
u32 data_seg_size = *(u32 *)UC_CAPS;
−
data_seg_size &= 0x1FF;
+
data_seg_size >>= 0x09;
−
data_seg_size <<= 0x08;
+
data_seg_size &= 0x1FF;
+
data_seg_size <<= 0x08;
−
// Set the stack pointer
+
// Set the stack pointer
−
*(u32 *)sp = data_seg_size;
+
*(u32 *)sp = data_seg_size;
+
</pre>
=== Main ===
=== Main ===
Falcon reads the [[#Key data|key data]] and then authenticates, loads and executes [[#KeygenLdr|KeygenLdr]] which sets the TSEC key.
Falcon reads the [[#Key data|key data]] and then authenticates, loads and executes [[#KeygenLdr|KeygenLdr]] which sets the TSEC key.
−
u32 boot_base_addr = 0;
+
<pre>
−
u8 key_data_buf[0x7C];
+
u32 boot_base_addr = 0;
+
u8 key_data_buf[0x7C];
−
// Read the key data from memory
+
// Read the key data from memory
−
u32 key_data_addr = 0x300;
+
u32 key_data_addr = 0x300;
−
u32 key_data_size = 0x7C;
+
u32 key_data_size = 0x7C;
−
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);
+
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);
−
// Read the next code segment into boot base
+
// Read the next code segment into boot base
−
u32 blob1_addr = 0x400;
+
u32 blob1_addr = 0x400;
−
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
+
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
−
memcpy_i2d(boot_base_addr, blob1_addr, blob1_size);
+
memcpy_i2d(boot_base_addr, blob1_addr, blob1_size);
−
// Upload the next code segment into Falcon's CODE region
+
// Upload the next code segment into Falcon's CODE region
−
u32 blob1_virt_addr = 0x300;
+
u32 blob1_virt_addr = 0x300;
−
bool use_secret = true;
+
bool use_secret = true;
−
memcpy_d2i(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
+
memcpy_d2i(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
−
u32 boot_res = 0;
+
u32 boot_res = 0;
−
bool is_done = false;
+
bool is_done = false;
−
u32 time = 0;
+
u32 time = 0;
−
bool is_blob_dec = false;
+
bool is_blob_dec = false;
−
while (!is_done)
+
while (!is_done)
−
{
−
if (time > 4000000)
{
{
−
// Write boot failed (timeout) magic to FALCON_SCRATCH1
+
if (time > 4000000)
−
boot_res = 0xC0C0C0C0;
+
{
−
*(u32 *)FALCON_SCRATCH1 = boot_res;
+
// Write boot failed (timeout) magic to FALCON_SCRATCH1
+
boot_res = 0xC0C0C0C0;
+
*(u32 *)FALCON_SCRATCH1 = boot_res;
−
break;
+
break;
−
}
+
}
−
// Load key version from FALCON_SCRATCH0 (bootloader sends 0x01)
+
// Load key version from FALCON_SCRATCH0 (bootloader sends 0x01)
−
u32 key_version = *(u32 *)FALCON_SCRATCH0;
+
u32 key_version = *(u32 *)FALCON_SCRATCH0;
−
if (key_version == 0x64)
+
if (key_version == 0x64)
−
{
+
{
−
// Skip all next stages
+
// Skip all next stages
−
boot_res = 0xB0B0B0B0;
+
boot_res = 0xB0B0B0B0;
−
*(u32 *)FALCON_SCRATCH1 = boot_res;
+
*(u32 *)FALCON_SCRATCH1 = boot_res;
−
break;
+
break;
−
}
+
}
−
else
+
else
−
{
+
{
−
if (key_version > 0x03)
+
if (key_version > 0x03)
−
boot_res = 0xD0D0D0D0; // Invalid key version
+
boot_res = 0xD0D0D0D0; // Invalid key version
−
else if (key_version == 0)
+
else if (key_version == 0)
−
boot_res = 0xB0B0B0B0; // No keys used
+
boot_res = 0xB0B0B0B0; // No keys used
−
else
+
else
−
{
+
{
−
u32 key_buf[0x7C];
+
u32 key_buf[0x7C];
−
// Copy key data
+
// Copy key data
−
memcpy(key_buf, key_data_buf, 0x7C);
+
memcpy(key_buf, key_data_buf, 0x7C);
−
u32 crypt_reg_flag = 0x00060000;
+
u32 crypto_reg_flag = 0x00060000;
−
u32 blob1_hash_addr = key_buf + 0x20;
+
u32 blob1_hash_addr = key_buf + 0x20;
−
// fuc5 crypt cauth instruction
+
// Set auth_addr to 0x300 and auth_size to blob1_size
−
// Set auth_addr to 0x300 and auth_size to blob1_size
+
$cauth = ((blob1_size << 0x10) | (0x300 >> 0x08));
−
cauth((blob1_size << 0x10) | (0x300 >> 0x08));
+
−
+
// The next 2 xfer instructions will be overridden
−
// fuc5 crypt cxset instruction
+
// and target changes from DMA to crypto
−
// The next 2 xfer instructions will be overridden
+
cxset(0x02);
−
// and target changes from DMA to crypto
−
cxset(0x02);
−
// Transfer data to crypto register c6
+
// Transfer data to crypto register c6
−
xdst(0, (blob1_hash_addr | crypt_reg_flag));
+
xdst(0, (blob1_hash_addr | crypto_reg_flag));
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
// Jump to KeygenLdr
+
// Jump to KeygenLdr
−
u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec);
+
u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec);
−
is_blob_dec = true; // Set this to prevent decrypting again
+
is_blob_dec = true; // Set this to prevent decrypting again
−
// Set boot finish magic on success
+
// Set boot finish magic on success
−
if (keygenldr_res == 0)
+
if (keygenldr_res == 0)
−
boot_res = 0xB0B0B0B0
+
boot_res = 0xB0B0B0B0
−
}
+
}
−
// Write result to FALCON_SCRATCH1
+
// Write result to FALCON_SCRATCH1
−
*(u32 *)FALCON_SCRATCH1 = boot_res;
+
*(u32 *)FALCON_SCRATCH1 = boot_res;
+
+
if (boot_res == 0xB0B0B0B0)
+
is_done = true;
+
}
−
if (boot_res == 0xB0B0B0B0)
+
time++;
−
is_done = true;
}
}
−
time++;
+
// Overwrite the TSEC key in SOR1 registers
−
}
+
// This has no effect because the KeygenLdr locks out the TSEC DMA engine
+
tsec_set_key(key_data_buf);
−
// Overwrite the TSEC key in SOR1 registers
+
return boot_res;
−
// This has no effect because the KeygenLdr locks out the TSEC DMA engine
+
</pre>
−
tsec_set_key(key_data_buf);
−
−
return boot_res;
[6.2.0+] Falcon reads the [[#Key data|key data]] and jumps to [[#SecureBootLdr|SecureBootLdr]].
[6.2.0+] Falcon reads the [[#Key data|key data]] and jumps to [[#SecureBootLdr|SecureBootLdr]].
−
u8 key_data_buf[0x84];
+
<pre>
+
u8 key_data_buf[0x84];
−
// Read the key data from memory
+
// Read the key data from memory
−
u32 key_data_addr = 0x300;
+
u32 key_data_addr = 0x300;
−
u32 key_data_size = 0x84;
+
u32 key_data_size = 0x84;
−
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);
+
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);
−
// Calculate the next blob's address
+
// Calculate the next blob's address
−
u32 blob4_size = *(u32 *)(key_data_buf + 0x80);
+
u32 blob4_size = *(u32 *)(key_data_buf + 0x80);
−
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
+
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
−
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
+
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
−
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
+
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
−
u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size);
+
u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size);
−
// Jump to next blob
+
// Jump to next blob
−
(void *)blob3_addr();
+
(void *)blob3_addr();
−
return 0;
+
return 0;
+
</pre>
==== tsec_set_key ====
==== tsec_set_key ====
This method takes '''key_data_buf''' (a 16 bytes buffer) as argument and writes its contents to SOR1 registers.
This method takes '''key_data_buf''' (a 16 bytes buffer) as argument and writes its contents to SOR1 registers.
−
// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40)
+
<pre>
−
*(u32 *)TSEC_DMA_CFG = 0xFFF;
+
// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40)
+
*(u32 *)TSEC_DMA_TIMEOUT = 0xFFF;
−
// Read the key's words
+
// Read the key's words
−
u32 key0 = *(u32 *)(key_data_buf + 0x00);
+
u32 key0 = *(u32 *)(key_data_buf + 0x00);
−
u32 key1 = *(u32 *)(key_data_buf + 0x04);
+
u32 key1 = *(u32 *)(key_data_buf + 0x04);
−
u32 key2 = *(u32 *)(key_data_buf + 0x08);
+
u32 key2 = *(u32 *)(key_data_buf + 0x08);
−
u32 key3 = *(u32 *)(key_data_buf + 0x0C);
+
u32 key3 = *(u32 *)(key_data_buf + 0x0C);
−
u32 result = 0;
+
u32 result = 0;
−
// Write to SOR1 register
+
// Write to SOR1 register
−
result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0);
+
result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0);
−
// Failed to write
+
// Failed to write
−
if (result)
+
if (result)
−
return result;
+
return result;
+
+
// Write to SOR1 register
+
result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1);
−
// Write to SOR1 register
+
// Failed to write
−
result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1);
+
if (result)
+
return result;
−
// Failed to write
+
// Write to SOR1 register
−
if (result)
+
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2);
−
return result;
−
// Write to SOR1 register
+
// Failed to write
−
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2);
+
if (result)
+
return result;
−
// Failed to write
+
// Write to SOR1 register
−
if (result)
+
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3);
−
return result;
−
// Write to SOR1 register
+
// Failed to write
−
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3);
+
if (result)
+
return result;
−
// Failed to write
−
if (result)
return result;
return result;
−
+
</pre>
−
return result;
===== tsec_dma_write =====
===== tsec_dma_write =====
This method takes '''addr''' and '''value''' as arguments and performs a DMA write using TSEC MMIO.
This method takes '''addr''' and '''value''' as arguments and performs a DMA write using TSEC MMIO.
−
u32 result = 0;
+
<pre>
+
u32 result = 0;
−
// Wait for TSEC DMA engine
+
// Wait for TSEC DMA engine
−
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
+
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
−
result = wait_tsec_dma();
+
result = wait_tsec_dma();
−
// Wait failed
+
// Wait failed
−
if (result)
+
if (result)
−
return 1;
+
return 1;
−
// Set the destination address
+
// Set the destination address
−
// This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40)
+
// This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40)
−
*(u32 *)TSEC_DMA_ADDR = addr;
+
*(u32 *)TSEC_DMA_ADDR = addr;
−
// Set the value
+
// Set the value
−
// This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40)
+
// This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40)
−
*(u32 *)TSEC_DMA_VAL = value;
+
*(u32 *)TSEC_DMA_VAL = value;
−
// Start transfer?
+
// Start transfer
−
// This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40)
+
// This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40)
−
*(u32 *)TSEC_DMA_CMD = 0x800000F2;
+
*(u32 *)TSEC_DMA_CMD = 0x800000F2;
−
// Wait for TSEC DMA engine
+
// Wait for TSEC DMA engine
−
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
+
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
−
result = wait_tsec_dma();
+
result = wait_tsec_dma();
−
// Wait failed
+
// Wait failed
−
if (result)
+
if (result)
−
return 1;
+
return 1;
−
return 0;
+
return 0;
+
</pre>
== KeygenLdr ==
== KeygenLdr ==
Line 428:
Line 449:
=== Main ===
=== Main ===
−
// Clear interrupt flags
+
<pre>
−
*(u8 *)flags_ie0 = 0;
+
// Clear interrupt flags
−
*(u8 *)flags_ie1 = 0;
+
$flags.ie0 = 0;
−
*(u8 *)flags_ie2 = 0;
+
$flags.ie1 = 0;
+
$flags.ie2 = 0;
−
// fuc5 crypt cxset instruction
+
// Clear overrides
−
// Clear overrides
+
cxset(0x80);
−
cxset(0x80);
−
// fuc5 crypt cauth instruction
+
// Clear bit 0x13 in cauth
−
// Clear bit 0x13 in cauth
+
$cauth = ($cauth & ~(1 << 0x13));
−
cauth(cauth_old & ~(1 << 0x13));
−
// Set the target port for memory transfers
+
// Set the target port for memory transfers
−
xtargets(0);
+
$xtargets = 0;
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
// Wait for all code loads to finish
+
// Wait for all code loads to finish
−
xcwait();
+
xcwait();
−
// fuc5 crypt cxset instruction
+
// The next 2 xfer instructions will be overridden
−
// The next 2 xfer instructions will be overridden
+
// and target changes from DMA to crypto
−
// and target changes from DMA to crypto
+
cxset(0x02);
−
cxset(0x02);
−
// Transfer data to crypto register c0
+
// Transfer data to crypto register c0
−
// This should clear any leftover data
+
// This should clear any leftover data
−
xdst(0, 0);
+
xdst(0, 0);
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
// Clear all crypto registers, except c6 which is used for auth
+
// Clear all crypto registers, except c6 which is used for auth
−
cxor(c0, c0);
+
cxor($c0, $c0);
−
cmov(c1, c0);
+
cmov($c1, $c0);
−
cmov(c2, c0);
+
cmov($c2, $c0);
−
cmov(c3, c0);
+
cmov($c3, $c0);
−
cmov(c4, c0);
+
cmov($c4, $c0);
−
cmov(c5, c0);
+
cmov($c5, $c0);
−
cmov(c7, c0);
+
cmov($c7, $c0);
−
// Clear TSEC_TEGRA_CTL_TKFI_KFUSE
+
// Clear TSEC_TEGRA_CTL_TKFI_KFUSE
−
// This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40)
+
// This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40)
−
*(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF;
+
*(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF;
−
// Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
+
// Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
−
// This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40)
+
// This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40)
−
*(u32 *)TSEC_SCP_CTL_PKEY |= 0x01;
+
*(u32 *)TSEC_SCP_CTL_PKEY |= 0x01;
−
u32 is_pkey_loaded = 0;
+
u32 is_pkey_loaded = 0;
−
// Wait for TSEC_SCP_CTL_PKEY_LOADED
+
// Wait for TSEC_SCP_CTL_PKEY_LOADED
−
while (!is_pkey_loaded)
+
while (!is_pkey_loaded)
−
is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02);
+
is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02);
−
// Read data segment size from IO space
+
// Read data segment size from IO space
−
u32 data_seg_size = *(u32 *)UC_CAPS;
+
u32 data_seg_size = *(u32 *)FALCON_HWCFG;
−
data_seg_size >>= 0x09;
+
data_seg_size >>= 0x09;
−
data_seg_size &= 0x1FF;
+
data_seg_size &= 0x1FF;
−
data_seg_size <<= 0x08;
+
data_seg_size <<= 0x08;
−
// Check stack bounds
+
// Check stack bounds
−
if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800))
+
if (($sp >= data_seg_size) || ($sp < 0x800))
−
exit();
+
exit();
−
// Decrypt and load Keygen stage
+
// Decrypt and load Keygen stage
−
load_keygen(key_buf, key_version, is_blob_dec);
+
load_keygen(key_buf, key_version, is_blob_dec);
−
// fuc5 crypt csigclr instruction
+
// Clear the cauth signature
−
// Clears the cauth signature
+
csigclr();
−
csigclr();
−
// Clear all crypto registers
+
// Clear all crypto registers
−
cxor(c0, c0);
+
cxor($c0, $c0);
−
cxor(c1, c1);
+
cxor($c1, $c1);
−
cxor(c2, c2);
+
cxor($c2, $c2);
−
cxor(c3, c3);
+
cxor($c3, $c3);
−
cxor(c4, c4);
+
cxor($c4, $c4);
−
cxor(c5, c5);
+
cxor($c5, $c5);
−
cxor(c6, c6);
+
cxor($c6, $c6);
−
cxor(c7, c7);
+
cxor($c7, $c7);
−
// Exit Authenticated Mode
+
// Take SCP out of lockdown
−
// This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40)
+
// This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40)
−
*(u32 *)TSEC_SCP_CTL_LOCK = 0;
+
*(u32 *)TSEC_SCP_CTL_LOCK = 0;
−
return;
+
return;
+
</pre>
==== load_keygen ====
==== load_keygen ====
−
u32 res = 0;
+
<pre>
+
u32 res = 0;
−
u32 boot_base_addr = 0;
+
u32 boot_base_addr = 0;
−
u32 blob0_addr = 0;
+
u32 blob0_addr = 0;
−
u32 blob0_size = *(u32 *)(key_buf + 0x70);
+
u32 blob0_size = *(u32 *)(key_buf + 0x70);
−
// Load blob0 code again
+
// Load blob0 code again
−
memcpy_i2d(boot_base_addr, blob0_addr, blob0_size);
+
memcpy_i2d(boot_base_addr, blob0_addr, blob0_size);
−
// Generate "CODE_SIG_01" key into c4 crypto register
+
// Generate "CODE_SIG_01" key into c4 crypto register
−
gen_usr_key(0, 0);
+
gen_usr_key(0, 0);
−
// Encrypt buffer with c4
+
// Encrypt buffer with c4
−
u8 sig_key[0x10];
+
u8 sig_key[0x10];
−
enc_buf(sig_key, blob0_size);
+
enc_buf(sig_key, blob0_size);
−
u32 src_addr = boot_base_addr;
+
u32 src_addr = boot_base_addr;
−
u32 src_size = blob0_size;
+
u32 src_size = blob0_size;
−
u32 iv_addr = sig_key;
+
u32 iv_addr = sig_key;
−
u32 dst_addr = sig_key;
+
u32 dst_addr = sig_key;
−
u32 mode = 0x02; // AES-CMAC
+
u32 mode = 0x02; // AES-CMAC
−
u32 use_imem = 0;
+
u32 use_imem = 0;
−
// Do AES-CMAC over blob0 code
+
// Do AES-CMAC over blob0 code
−
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, use_imem);
+
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, use_imem);
−
// Compare the hashes
+
// Compare the hashes
−
if (memcmp(dst_addr, key_buf + 0x10, 0x10))
+
if (memcmp(dst_addr, key_buf + 0x10, 0x10))
−
{
+
{
−
res = 0xDEADBEEF;
+
res = 0xDEADBEEF;
−
return res;
+
return res;
−
}
+
}
−
u32 blob1_size = *(u32 *)(key_buf + 0x74);
+
u32 blob1_size = *(u32 *)(key_buf + 0x74);
−
// Decrypt Keygen blob if needed
+
// Decrypt Keygen blob if needed
−
if (!is_blob_dec)
+
if (!is_blob_dec)
−
{
+
{
−
// Read Stage2's size from key buffer
+
// Read Stage2's size from key buffer
−
u32 blob2_size = *(u32 *)(key_buf + 0x78);
+
u32 blob2_size = *(u32 *)(key_buf + 0x78);
−
// Check stack bounds
+
// Check stack bounds
−
if (*(u32 *)sp > blob2_size)
+
if ($sp > blob2_size)
−
{
+
{
−
u32 boot_base_addr = 0;
+
u32 boot_base_addr = 0;
−
u32 blob2_virt_addr = blob0_size + blob1_size;
+
u32 blob2_virt_addr = blob0_size + blob1_size;
−
u32 blob2_addr = blob2_virt_addr + 0x100;
+
u32 blob2_addr = blob2_virt_addr + 0x100;
−
// Read Keygen encrypted blob
+
// Read Keygen encrypted blob
−
memcpy_i2d(boot_base_addr, blob2_addr, blob2_size);
+
memcpy_i2d(boot_base_addr, blob2_addr, blob2_size);
−
// Generate "CODE_ENC_01" key into c4 crypt register
+
// Generate "CODE_ENC_01" key into c4 crypto register
−
gen_usr_key(0x01, 0x01);
+
gen_usr_key(0x01, 0x01);
−
u32 src_addr = boot_base_addr;
+
u32 src_addr = boot_base_addr;
−
u32 src_size = blob2_size;
+
u32 src_size = blob2_size;
−
u32 iv_addr = key_buf + 0x40;
+
u32 iv_addr = key_buf + 0x40;
−
u32 dst_addr = boot_base_addr;
+
u32 dst_addr = boot_base_addr;
−
u32 mode = 0; // AES-128-ECB
+
u32 mode = 0; // AES-128-ECB
−
u32 use_imem = 0;
+
u32 use_imem = 0;
−
// Decrypt Keygen blob
+
// Decrypt Keygen blob
−
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, use_imem);
+
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, use_imem);
−
// Upload the next code segment into Falcon's CODE region
+
// Upload the next code segment into Falcon's CODE region
−
bool use_secret = true;
+
bool use_secret = true;
−
memcpy_d2i(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret);
+
memcpy_d2i(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret);
−
// Clear out the decrypted blob
+
// Clear out the decrypted blob
−
memset(boot_base_addr, 0, blob2_size);
+
memset(boot_base_addr, 0, blob2_size);
+
}
}
}
−
}
+
+
// The next 2 xfer instructions will be overridden
+
// and target changes from DMA to crypto
+
cxset(0x02);
−
// fuc5 crypt cxset instruction
+
u32 crypto_reg_flag = 0x00060000;
−
// The next 2 xfer instructions will be overridden
+
u32 blob2_hash_addr = key_buf + 0x30;
−
// and target changes from DMA to crypto
−
cxset(0x02);
−
u32 crypt_reg_flag = 0x00060000;
+
// Transfer data to crypto register c6
−
u32 blob2_hash_addr = key_buf + 0x30;
+
xdst(0, (blob2_hash_addr | crypto_reg_flag));
−
−
// Transfer data to crypto register c6
−
xdst(0, (blob2_hash_addr | crypt_reg_flag));
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
// Save previous cauth value
+
// Save previous cauth value
−
u32 c_old = cauth_old;
+
u32 cauth_old = $cauth;
−
// fuc5 crypt cauth instruction
+
// Set auth_addr to blob2_virt_addr and auth_size to blob2_size
−
// Set auth_addr to blob2_virt_addr and auth_size to blob2_size
+
$cauth = ((blob2_virt_addr >> 0x08) | (blob2_size << 0x10));
−
cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10));
−
u32 hovi_key_addr = 0;
+
u32 hovi_key_addr = 0;
−
// Select next stage key
+
// Select next stage key
−
if (key_version == 0x01) // Use HOVI_EKS_01
+
if (key_version == 0x01) // Use HOVI_EKS_01
−
hovi_key_addr = key_buf + 0x50;
+
hovi_key_addr = key_buf + 0x50;
−
else if (key_version == 0x02) // Use HOVI_COMMON_01
+
else if (key_version == 0x02) // Use HOVI_COMMON_01
−
hovi_key_addr = key_buf + 0x60;
+
hovi_key_addr = key_buf + 0x60;
−
else if (key_version == 0x03) // Use debug key (empty)
+
else if (key_version == 0x03) // Use debug key (empty)
−
hovi_key_addr = key_buf + 0x00;
+
hovi_key_addr = key_buf + 0x00;
−
else
+
else
−
res = 0xD0D0D0D0
+
res = 0xD0D0D0D0
−
// Jump to Keygen
+
// Jump to Keygen
−
if (hovi_key_addr)
+
if (hovi_key_addr)
−
res = exec_keygen(hovi_key_addr, key_version);
+
res = exec_keygen(hovi_key_addr, key_version);
−
// Clear out key data
+
// Clear out key data
−
memset(key_buf, 0, 0x7C);
+
memset(key_buf, 0, 0x7C);
−
// fuc5 crypt cauth instruction
+
// Restore previous cauth value
−
// Restore previous cauth value
+
$cauth = cauth_old;
−
cauth(c_old);
−
return res;
+
return res;
+
</pre>
===== gen_usr_key =====
===== gen_usr_key =====
This method takes '''type''' and '''mode''' as arguments and generates a key.
This method takes '''type''' and '''mode''' as arguments and generates a key.
−
u8 seed_buf[0x10];
+
<pre>
+
u8 seed_buf[0x10];
−
// Read a 16 bytes seed based on supplied type
+
// Read a 16 bytes seed based on supplied type
−
/*
+
/*
−
Type 0: "CODE_SIG_01" + null padding
+
Type 0: "CODE_SIG_01" + null padding
−
Type 1: "CODE_ENC_01" + null padding
+
Type 1: "CODE_ENC_01" + null padding
−
*/
+
*/
−
get_seed(seed_buf, type);
+
get_seed(seed_buf, type);
−
// This will write the seed into crypto register c0
+
// This will write the seed into crypto register c0
−
crypt_store(0, seed_buf);
+
crypto_store(0, seed_buf);
−
// fuc5 csecret instruction
+
// Load selected secret into crypto register c1
−
// Load selected secret into crypto register c1
+
csecret($c1, 0x26);
−
csecret(c1, 0x26);
−
// fuc5 ckeyreg instruction
+
// Bind c1 register as the key for enc/dec operations
−
// Bind c1 register as the key for enc/dec operations
+
ckeyreg($c1);
−
ckeyreg(c1);
−
// fuc5 cenc instruction
+
// Encrypt seed_buf in c0 using keyreg value as key into c1
−
// Encrypt seed_buf (in c0) using keyreg value as key into c1
+
cenc($c1, $c0);
−
cenc(c1, c0);
−
// fuc5 csigenc instruction
+
// Encrypt the auth signature (stored in c6) with c1 and store in c1
−
// Encrypt c1 register with the auth signature stored in c6
+
csigenc($c1, $c1);
−
csigenc(c1, c1);
−
// Copy the result into c4 (will be used as key)
+
// Copy the result to c4 (will be used as key)
−
cmov(c4, c1);
+
cmov($c4, $c1);
−
// Do key expansion (for decryption)
+
// Do key expansion for decryption if necessary
−
if (mode != 0)
+
if (mode != 0)
−
ckexp(c4, c4); // fuc5 ckexp instruction
+
ckexp($c4, $c4);
−
return;
+
return;
+
</pre>
===== enc_buffer =====
===== enc_buffer =====
This method takes '''buf''' (a 16 bytes buffer) and '''size''' as arguments and encrypts the supplied buffer.
This method takes '''buf''' (a 16 bytes buffer) and '''size''' as arguments and encrypts the supplied buffer.
−
// Set first 3 words to null
+
<pre>
−
*(u32 *)(buf + 0x00) = 0;
+
// Set first 3 words to null
−
*(u32 *)(buf + 0x04) = 0;
+
*(u32 *)(buf + 0x00) = 0;
−
*(u32 *)(buf + 0x08) = 0;
+
*(u32 *)(buf + 0x04) = 0;
+
*(u32 *)(buf + 0x08) = 0;
−
// Swap halves (b16, b32 and b16 again)
+
// Swap halves (b16, b32 and b16 again)
−
hswap(size);
+
hswap(size);
−
// Store the size as the last word
+
// Store the size as the last word
−
*(u32 *)(buf + 0x0C) = size;
+
*(u32 *)(buf + 0x0C) = size;
−
// This will write buf into crypto register c3
+
// This will write buf into crypto register c3
−
crypt_store(0x03, buf);
+
crypto_store(0x03, buf);
−
// fuc5 ckeyreg instruction
+
// Bind c4 register as the key for enc/dec operations
−
// Bind c4 register (from keygen) as the key for enc/dec operations
+
ckeyreg($c4);
−
ckeyreg(c4);
−
// fuc5 cenc instruction
+
// Encrypt buf in c3 using keyreg value as key and store in c5
−
// Encrypt buf (in c3) using keyreg value as key into c5
+
cenc($c5, $c3);
−
cenc(c5, c3);
−
// This will read into buf from crypto register c5
+
// This will read into buf from crypto register c5
−
crypt_load(0x05, buf);
+
crypto_load(0x05, buf);
−
return;
+
return;
+
</pre>
===== do_crypto =====
===== do_crypto =====
This is the method responsible for all crypto operations performed during [[#KeygenLdr|KeygenLdr]]. It takes '''src_addr''', '''src_size''', '''iv_addr''', '''dst_addr''', '''mode''' and '''use_imem''' as arguments.
This is the method responsible for all crypto operations performed during [[#KeygenLdr|KeygenLdr]]. It takes '''src_addr''', '''src_size''', '''iv_addr''', '''dst_addr''', '''mode''' and '''use_imem''' as arguments.
−
// Check for invalid source data size
+
<pre>
−
if (!src_size || (src_size & 0x0F))
+
// Check for invalid source data size
−
exit();
+
if (!src_size || (src_size & 0x0F))
+
exit();
−
// Check for invalid source data address
+
// Check for invalid source data address
−
if (src_addr & 0x0F)
+
if (src_addr & 0x0F)
−
exit();
+
exit();
−
// Check for invalid destination data address
+
// Check for invalid destination data address
−
if (dst_addr & 0x0F)
+
if (dst_addr & 0x0F)
−
exit();
+
exit();
−
// Use IV if available
+
// Use IV if available
−
if (iv_addr)
+
if (iv_addr)
−
{
+
{
−
// This will write the iv_addr into crypto register c5
+
// This will write the iv_addr into crypto register c5
−
crypt_store(0x05, iv_addr);
+
crypto_store(0x05, iv_addr);
−
}
+
}
−
else
+
else
−
{
+
{
−
// Clear c5 register (use null IV)
+
// Clear c5 register (use null IV)
−
cxor(c5, c5);
+
cxor($c5, $c5);
−
}
+
}
−
// Use key in c4
+
// Bind c4 register as the key for enc/dec operations
−
ckeyreg(c4);
+
ckeyreg(c4);
−
// AES-128-CBC decrypt
+
// AES-128-CBC decrypt
−
if (mode == 0x00)
+
if (mode == 0x00)
−
{
+
{
−
// Create crypto script with 5 instructions
+
// Create crypto script with 5 instructions
−
cs0begin(0x05);
+
cs0begin(0x05);
−
cxsin(c3); // Read 0x10 bytes from crypto stream into c3
+
cxsin($c3); // Read 0x10 bytes from crypto stream into c3
−
cdec(c2, c3); // Decrypt from c3 into c2
+
cdec($c2, $c3); // Decrypt from c3 into c2
−
cxor(c5, c2); // XOR c2 with c5 and store in c5
+
cxor($c5, $c2); // XOR c2 with c5 and store in c5
−
cxsout(c5); // Write 0x10 bytes into crypto stream from c5
+
cxsout($c5); // Write 0x10 bytes into crypto stream from c5
−
cmov(c5, c3); // Move c3 into c5
+
cmov($c5, $c3); // Move c3 into c5
−
}
+
}
−
else if (mode == 0x01) // AES-128-CBC encrypt
+
else if (mode == 0x01) // AES-128-CBC encrypt
−
{
+
{
−
// Create crypto script with 4 instructions
+
// Create crypto script with 4 instructions
−
cs0begin(0x04);
+
cs0begin(0x04);
−
cxsin(c3); // Read 0x10 bytes from crypto stream into c3
+
cxsin($c3); // Read 0x10 bytes from crypto stream into c3
−
cxor(c3, c5); // XOR c5 with c3 and store in c3
+
cxor($c3, $c5); // XOR c5 with c3 and store in c3
−
cenc(c5, c3); // Encrypt from c3 into c5
+
cenc($c5, $c3); // Encrypt from c3 into c5
−
cxsout(c5); // Write 0x10 bytes into crypto stream from c5
+
cxsout($c5); // Write 0x10 bytes into crypto stream from c5
−
}
+
}
−
else if (mode == 0x02) // AES-CMAC
+
else if (mode == 0x02) // AES-CMAC
−
{
+
{
−
// Create crypto script with 3 instructions
+
// Create crypto script with 3 instructions
−
cs0begin(0x03);
+
cs0begin(0x03);
−
cxsin(c3); // Read 0x10 bytes from crypto stream into c3
+
cxsin($c3); // Read 0x10 bytes from crypto stream into c3
−
cxor(c5, c3); // XOR c5 with c3 and store in c3
+
cxor($c5, $c3); // XOR c5 with c3 and store in c3
−
cenc(c5, c5); // Encrypt from c5 into c5
+
cenc($c5, $c5); // Encrypt from c5 into c5
−
}
+
}
−
else if (mode == 0x03) // AES-128-ECB decrypt
+
else if (mode == 0x03) // AES-128-ECB decrypt
−
{
+
{
−
// Create crypto script with 3 instructions
+
// Create crypto script with 3 instructions
−
cs0begin(0x03);
+
cs0begin(0x03);
−
cxsin(c3); // Read 0x10 bytes from crypto stream into c3
+
cxsin($c3); // Read 0x10 bytes from crypto stream into c3
−
cdec(c5, c3); // Decrypt from c3 into c5
+
cdec($c5, $c3); // Decrypt from c3 into c5
−
cxsout(c5); // Write 0x10 bytes into crypto stream from c5
+
cxsout($c5); // Write 0x10 bytes into crypto stream from c5
−
}
+
}
−
else if (mode == 0x04) // AES-128-ECB encrypt
+
else if (mode == 0x04) // AES-128-ECB encrypt
−
{
+
{
−
// Create crypto script with 3 instructions
+
// Create crypto script with 3 instructions
−
cs0begin(0x03);
+
cs0begin(0x03);
−
cxsin(c3); // Read 0x10 bytes from crypto stream into c3
+
cxsin($c3); // Read 0x10 bytes from crypto stream into c3
−
cenc(c5, c3); // Encrypt from c3 into c5
+
cenc($c5, $c3); // Encrypt from c3 into c5
−
cxsout(c5); // Write 0x10 bytes into crypto stream from c5
+
cxsout($c5); // Write 0x10 bytes into crypto stream from c5
−
}
+
}
−
else
+
else
−
return;
+
return;
−
// Main loop
+
// Main loop
−
while (src_size > 0)
+
while (src_size > 0)
−
{
+
{
−
u32 blk_count = (src_size >> 0x04);
+
u32 blk_count = (src_size >> 0x04);
−
if (blk_count > 0x10)
+
if (blk_count > 0x10)
−
blk_count = 0x10;
+
blk_count = 0x10;
−
// Check size align
+
// Check size align
−
if (blk_count & (blk_count - 0x01))
+
if (blk_count & (blk_count - 0x01))
−
blk_count = 0x01;
+
blk_count = 0x01;
−
u32 blk_size = (blk_count << 0x04);
+
u32 blk_size = (blk_count << 0x04);
−
u32 crypt_xfer_src = 0;
+
u32 crypto_xfer_src = 0;
−
u32 crypt_xfer_dst = 0;
+
u32 crypto_xfer_dst = 0;
−
if (block_size == 0x20)
+
if (block_size == 0x20)
−
{
+
{
−
crypt_xfer_src = (0x00030000 | src_addr);
+
crypto_xfer_src = (0x00030000 | src_addr);
−
crypt_xfer_dst = (0x00030000 | dst_addr);
+
crypto_xfer_dst = (0x00030000 | dst_addr);
−
// Execute crypto script 2 times (1 for each block)
+
// Execute crypto script 2 times (1 for each block)
−
cs0exec(0x02);
+
cs0exec(0x02);
−
}
+
}
−
if (block_size == 0x40)
+
else if (block_size == 0x40)
−
{
+
{
−
crypt_xfer_src = (0x00040000 | src_addr);
+
crypto_xfer_src = (0x00040000 | src_addr);
−
crypt_xfer_dst = (0x00040000 | dst_addr);
+
crypto_xfer_dst = (0x00040000 | dst_addr);
−
// Execute crypto script 4 times (1 for each block)
+
// Execute crypto script 4 times (1 for each block)
−
cs0exec(0x04);
+
cs0exec(0x04);
−
}
+
}
−
if (block_size == 0x80)
+
else if (block_size == 0x80)
−
{
+
{
−
crypt_xfer_src = (0x00050000 | src_addr);
+
crypto_xfer_src = (0x00050000 | src_addr);
−
crypt_xfer_dst = (0x00050000 | dst_addr);
+
crypto_xfer_dst = (0x00050000 | dst_addr);
−
// Execute crypto script 8 times (1 for each block)
+
// Execute crypto script 8 times (1 for each block)
−
cs0exec(0x08);
+
cs0exec(0x08);
−
}
+
}
−
if (block_size == 0x100)
+
else if (block_size == 0x100)
−
{
+
{
−
crypt_xfer_src = (0x00060000 | src_addr);
+
crypto_xfer_src = (0x00060000 | src_addr);
−
crypt_xfer_dst = (0x00060000 | dst_addr);
+
crypto_xfer_dst = (0x00060000 | dst_addr);
−
// Execute crypto script 16 times (1 for each block)
+
// Execute crypto script 16 times (1 for each block)
−
cs0exec(0x10);
+
cs0exec(0x10);
−
}
+
}
−
else
+
else
−
{
+
{
−
crypt_xfer_src = (0x00020000 | src_addr);
+
crypto_xfer_src = (0x00020000 | src_addr);
−
crypt_xfer_dst = (0x00020000 | dst_addr);
+
crypto_xfer_dst = (0x00020000 | dst_addr);
−
// Execute crypto script 1 time (1 for each block)
+
// Execute crypto script 1 time (1 for each block)
−
cs0exec(0x01);
+
cs0exec(0x01);
−
// Ensure proper block size
+
// Ensure proper block size
−
block_size = 0x10;
+
block_size = 0x10;
−
}
+
}
−
// fuc5 crypt cxset instruction
+
// The next xfer instruction will be overridden
−
// The next xfer instruction will be overridden
+
// and target changes from DMA to crypto input/output stream
−
// and target changes from DMA to crypto input/output stream
+
if (use_imem)
−
if (use_imem)
+
cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream
−
cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream
+
else
−
else
+
cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream
−
cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream
−
// Transfer data into the crypto input/output stream
+
// Transfer data into the crypto input/output stream
−
xdst(crypt_xfer_src, crypt_xfer_src);
+
xdst(crypto_xfer_src, crypto_xfer_src);
−
// AES-CMAC only needs one more xfer instruction
+
// AES-CMAC only needs one more xfer instruction
−
if (mode == 0x02)
+
if (mode == 0x02)
−
{
+
{
−
// fuc5 crypt cxset instruction
+
// The next xfer instruction will be overridden
−
// The next xfer instruction will be overridden
+
// and target changes from DMA to crypto input/output stream
−
// and target changes from DMA to crypto input/output stream
+
if (use_imem)
−
if (use_imem)
+
cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream
−
cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream
+
else
−
else
+
cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream
−
cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
}
+
}
−
else // AES enc/dec needs 2 more xfer instructions
+
else // AES enc/dec needs 2 more xfer instructions
−
{
+
{
−
// fuc5 crypt cxset instruction
+
// The next 2 xfer instructions will be overridden
−
// The next 2 xfer instructions will be overridden
+
// and target changes from DMA to crypto input/output stream
−
// and target changes from DMA to crypto input/output stream
+
if (use_imem)
−
if (use_imem)
+
cxset(0xA2); // Flag 0xA0 is falcon imem <-> crypto input/output stream
−
cxset(0xA2); // Flag 0xA0 is falcon imem <-> crypto input/output stream
+
else
−
else
+
cxset(0x22); // Flag 0x20 is external mem <-> crypto input/output stream
−
cxset(0x22); // Flag 0x20 is external mem <-> crypto input/output stream
−
// Transfer data from the crypto input/output stream
+
// Transfer data from the crypto input/output stream
−
xdld(crypt_xfer_dst, crypt_xfer_dst);
+
xdld(crypto_xfer_dst, crypto_xfer_dst);
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
// Increase the destination address by block size
+
// Increase the destination address by block size
−
dst_addr += block_size;
+
dst_addr += block_size;
−
}
+
}
−
// Increase the source address by block size
+
// Increase the source address by block size
−
src_addr += block_size;
+
src_addr += block_size;
−
// Decrease the source size by block size
+
// Decrease the source size by block size
−
src_size -= block_size;
+
src_size -= block_size;
−
}
+
}
−
// AES-CMAC result is in c5
+
// AES-CMAC result is in c5
−
if (mode == 0x02)
+
if (mode == 0x02)
−
{
+
{
−
// This will read into dst_addr from crypto register c5
+
// This will read into dst_addr from crypto register c5
−
crypt_load(0x05, dst_addr);
+
crypto_load(0x05, dst_addr);
−
}
+
}
−
return;
+
return;
+
</pre>
== Keygen ==
== Keygen ==
This stage is decrypted by [[#KeygenLdr|KeygenLdr]] using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC key.
This stage is decrypted by [[#KeygenLdr|KeygenLdr]] using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC key.
+
+
=== Main ===
+
The main function takes '''key_addr''' and '''key_type''' as arguments from [[#KeygenLdr|KeygenLdr]].
+
<pre>
+
u32 flcn_version = *(u32 *)FALCON_HWCFG2 & 0x0F;
+
+
// Falcon hardware version must be 5
+
if (flcn_version != 0x05)
+
exit();
+
+
// Clear interrupt flags
+
$flags.ie0 = 0;
+
$flags.ie1 = 0;
+
$flags.ie2 = 0;
+
+
// Set the target port for memory transfers
+
$xtargets = 0;
+
+
// Generate the TSEC key
+
gen_tsec_key(key_addr, key_type);
+
+
// Clear the cauth signature
+
csigclr();
+
+
// Clear all crypto registers
+
cxor($c0, $c0);
+
cxor($c1, $c1);
+
cxor($c2, $c2);
+
cxor($c3, $c3);
+
cxor($c4, $c4);
+
cxor($c5, $c5);
+
cxor($c6, $c6);
+
cxor($c7, $c7);
+
+
return;
+
</pre>
== SecureBootLdr ==
== SecureBootLdr ==
Line 919:
Line 970:
=== Main ===
=== Main ===
−
u8 key_data_buf[0x84];
+
<pre>
−
u8 tmp_key_data_buf[0x84];
+
u8 key_data_buf[0x84];
+
u8 tmp_key_data_buf[0x84];
−
// Read the key data from memory
+
// Read the key data from memory
−
u32 key_data_addr = 0x300;
+
u32 key_data_addr = 0x300;
−
u32 key_data_size = 0x84;
+
u32 key_data_size = 0x84;
−
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);
+
memcpy_i2d(key_data_buf, key_data_addr, key_data_size);
−
// Read the KeygenLdr blob from memory
+
// Read the KeygenLdr blob from memory
−
u32 boot_base_addr = 0;
+
u32 boot_base_addr = 0;
−
u32 blob1_addr = 0x400;
+
u32 blob1_addr = 0x400;
−
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
+
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
−
memcpy_i2d(boot_base_addr, blob1_addr, blob1_size);
+
memcpy_i2d(boot_base_addr, blob1_addr, blob1_size);
−
// Upload the next code segment into Falcon's CODE region
+
// Upload the next code segment into Falcon's CODE region
−
u32 blob1_virt_addr = 0x300;
+
u32 blob1_virt_addr = 0x300;
−
bool use_secret = true;
+
bool use_secret = true;
−
memcpy_d2i(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
+
memcpy_d2i(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
−
// Backup the key data
+
// Backup the key data
−
memcpy(tmp_key_data_buf, key_data_buf, 0x84);
+
memcpy(tmp_key_data_buf, key_data_buf, 0x84);
−
// Save previous cauth value
+
// Save previous cauth value
−
u32 c_old = cauth_old;
+
u32 cauth_old = $cauth;
−
// Set auth_addr to 0x300 and auth_size to blob1_size
+
// Set auth_addr to 0x300 and auth_size to blob1_size
−
$cauth = ((blob1_size << 0x10) | (0x300 >> 0x08));
+
$cauth = ((blob1_size << 0x10) | (0x300 >> 0x08));
−
// fuc5 crypt cxset instruction
+
// The next 2 xfer instructions will be overridden
−
// The next 2 xfer instructions will be overridden
+
// and target changes from DMA to crypto
−
// and target changes from DMA to crypto
+
cxset(0x02);
−
cxset(0x02);
−
u32 crypt_reg_flag = 0x00060000;
+
u32 crypto_reg_flag = 0x00060000;
−
u32 blob1_hash_addr = tmp_key_data_buf + 0x20;
+
u32 blob1_hash_addr = tmp_key_data_buf + 0x20;
−
// Transfer data to crypto register c6
+
// Transfer data to crypto register c6
−
xdst(0, (blob1_hash_addr | crypt_reg_flag));
+
xdst(0, (blob1_hash_addr | crypto_reg_flag));
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
u32 key_version = 0x01;
+
u32 key_version = 0x01;
−
bool is_blob_dec = false;
+
bool is_blob_dec = false;
−
// Jump to KeygenLdr
+
// Jump to KeygenLdr
−
u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec);
+
u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec);
−
// Set boot finish magic on success
+
// Set boot finish magic on success
−
if (keygenldr_res == 0)
+
if (keygenldr_res == 0)
−
keygenldr_res = 0xB0B0B0B0
+
keygenldr_res = 0xB0B0B0B0
−
// Write result to FALCON_SCRATCH1
+
// Write result to FALCON_SCRATCH1
−
*(u32 *)FALCON_SCRATCH1 = keygenldr_res;
+
*(u32 *)FALCON_SCRATCH1 = keygenldr_res;
−
if (keygenldr_res != 0xB0B0B0B0)
+
if (keygenldr_res != 0xB0B0B0B0)
−
return keygenldr_res;
+
return keygenldr_res;
−
// Restore previous cauth value
+
// Restore previous cauth value
−
$cauth = c_old;
+
$cauth = cauth_old;
−
u8 flcn_hdr_buf[0x18];
+
u8 flcn_hdr_buf[0x18];
−
u8 flcn_os_hdr_buf[0x10];
+
u8 flcn_os_hdr_buf[0x10];
−
blob1_size = *(u32 *)(key_data_buf + 0x74);
+
blob1_size = *(u32 *)(key_data_buf + 0x74);
−
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
+
u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
−
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
+
u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
−
// Read the SecureBoot blob's Falcon header from memory
+
// Read the SecureBoot blob's Falcon header from memory
−
u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size);
+
u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size);
−
memcpy_i2d(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18);
+
memcpy_i2d(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18);
−
blob1_size = *(u32 *)(key_data_buf + 0x74);
+
blob1_size = *(u32 *)(key_data_buf + 0x74);
−
blob2_size = *(u32 *)(key_data_buf + 0x78);
+
blob2_size = *(u32 *)(key_data_buf + 0x78);
−
blob0_size = *(u32 *)(key_data_buf + 0x70);
+
blob0_size = *(u32 *)(key_data_buf + 0x70);
−
u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C);
+
u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C);
−
// Read the SecureBoot blob's Falcon OS header from memory
+
// Read the SecureBoot blob's Falcon OS header from memory
−
u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size);
+
u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size);
−
memcpy_i2d(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10);
+
memcpy_i2d(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10);
−
blob1_size = *(u32 *)(key_data_buf + 0x74);
+
blob1_size = *(u32 *)(key_data_buf + 0x74);
−
blob2_size = *(u32 *)(key_data_buf + 0x78);
+
blob2_size = *(u32 *)(key_data_buf + 0x78);
−
blob0_size = *(u32 *)(key_data_buf + 0x70);
+
blob0_size = *(u32 *)(key_data_buf + 0x70);
−
u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
+
u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
−
u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
+
u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
−
// Read the SecureBoot blob's Falcon OS image from memory
+
// Read the SecureBoot blob's Falcon OS image from memory
−
u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size);
+
u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size);
−
memcpy_i2d(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size);
+
memcpy_i2d(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size);
−
// Upload the SecureBoot's Falcon OS image boot stub code segment into Falcon's CODE region
+
// Upload the SecureBoot's Falcon OS image boot stub code segment into Falcon's CODE region
−
u32 blob4_flcn_os_boot_virt_addr = 0;
+
u32 blob4_flcn_os_boot_virt_addr = 0;
−
u32 blob4_flcn_os_boot_size = 0x100;
+
u32 blob4_flcn_os_boot_size = 0x100;
−
use_secret = false;
+
use_secret = false;
−
memcpy_d2i(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret);
+
memcpy_d2i(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret);
−
flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
+
flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
−
// Upload the SecureBoot blob's Falcon OS encrypted image code segment into Falcon's CODE region
+
// Upload the SecureBoot blob's Falcon OS encrypted image code segment into Falcon's CODE region
−
u32 blob4_flcn_os_img_virt_addr = 0x100;
+
u32 blob4_flcn_os_img_virt_addr = 0x100;
−
u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100);
+
u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100);
−
use_secret = true;
+
use_secret = true;
−
memcpy_d2i(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret);
+
memcpy_d2i(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret);
−
// Wait for all code loads to finish
+
// Wait for all code loads to finish
−
xcwait();
+
xcwait();
−
blob1_size = *(u32 *)(key_data_buf + 0x74);
+
blob1_size = *(u32 *)(key_data_buf + 0x74);
−
blob2_size = *(u32 *)(key_data_buf + 0x78);
+
blob2_size = *(u32 *)(key_data_buf + 0x78);
−
blob0_size = *(u32 *)(key_data_buf + 0x70);
+
blob0_size = *(u32 *)(key_data_buf + 0x70);
−
flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
+
flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
−
u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08);
+
u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08);
−
// Read the SecureBoot blob's falcon OS image's hash from memory
+
// Read the SecureBoot blob's falcon OS image's hash from memory
−
u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size);
+
u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size);
−
memcpy_i2d(0, blob4_flcn_os_img_hash_addr, 0x10);
+
memcpy_i2d(0, blob4_flcn_os_img_hash_addr, 0x10);
−
// Read data segment size from IO space
+
// Read data segment size from IO space
−
u32 data_seg_size = *(u32 *)UC_CAPS;
+
u32 data_seg_size = *(u32 *)FALCON_HWCFG;
−
data_seg_size >>= 0x03;
+
data_seg_size >>= 0x03;
−
data_seg_size &= 0x3FC0;
+
data_seg_size &= 0x3FC0;
−
u32 data_addr = 0x10;
+
u32 data_addr = 0x10;
−
// Clear all data except the first 0x10 bytes (SecureBoot blob's Falcon OS image's hash)
+
// Clear all data except the first 0x10 bytes (SecureBoot blob's Falcon OS image's hash)
−
for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++)
+
for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++)
−
{
+
{
−
*(u32 *)(data_addr) = 0;
+
*(u32 *)(data_addr) = 0;
−
data_addr += 0x04;
+
data_addr += 0x04;
−
}
+
}
−
// Clear all crypto registers
+
// Clear all crypto registers
−
cxor(c0, c0);
+
cxor($c0, $c0);
−
cxor(c1, c1);
+
cxor($c1, $c1);
−
cxor(c2, c2);
+
cxor($c2, $c2);
−
cxor(c3, c3);
+
cxor($c3, $c3);
−
cxor(c4, c4);
+
cxor($c4, $c4);
−
cxor(c5, c5);
+
cxor($c5, $c5);
−
cxor(c6, c6);
+
cxor($c6, $c6);
−
cxor(c7, c7);
+
cxor($c7, $c7);
−
// fuc5 crypt csigclr instruction
+
// Clear the cauth signature
−
// Clears the cauth signature
+
csigclr();
−
csigclr();
−
// Jump to SecureBoot
+
// Jump to SecureBoot
−
exec_payload();
+
load_secboot();
−
return 0xB0B0B0B0;
+
return 0xB0B0B0B0;
+
</pre>
== SecureBoot ==
== SecureBoot ==
Line 1,076:
Line 1,127:
=== Main ===
=== Main ===
−
// Read data segment size from IO space
+
<pre>
−
u32 data_seg_size = *(u32 *)UC_CAPS;
+
// Read data segment size from IO space
−
data_seg_size >>= 0x01;
+
u32 data_seg_size = *(u32 *)FALCON_HWCFG;
−
data_seg_size &= 0xFF00;
+
data_seg_size >>= 0x01;
+
data_seg_size &= 0xFF00;
−
// Set the stack pointer
+
// Set the stack pointer
−
*(u32 *)sp = data_seg_size;
+
$sp = data_seg_size;
−
// Jump to the SecureBoot blob's Falcon OS image boot stub
+
// Jump to the SecureBoot blob's Falcon OS image boot stub
−
exec_flcn_os_boot();
+
init_secboot();
−
// Halt execution
+
// Halt execution
−
exit();
+
exit();
−
return;
+
return;
+
</pre>
−
==== exec_flcn_os_boot ====
+
==== init_secboot ====
−
// Read the transfer base address from IO space
+
<pre>
−
u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE;
+
// Read the transfer base address from IO space
+
u32 xfer_ext_base_addr = *(u32 *)FALCON_DMATRFBASE;
−
// Copy transfer base address to data memory
+
// Copy transfer base address to data memory
−
u32 scratch_data_addr = 0x300;
+
u32 scratch_data_addr = 0x300;
−
*(u32 *)scratch_data_addr = xfer_ext_base_addr;
+
*(u32 *)scratch_data_addr = xfer_ext_base_addr;
−
// Set the transfer base address
+
// Set the transfer base address
−
xcbase(xfer_ext_base_addr);
+
xcbase(xfer_ext_base_addr);
−
// fuc5 crypt cxset instruction
+
// The next xfer instruction will be overridden
−
// The next xfer instruction will be overridden
+
// and target changes from DMA to crypto
−
// and target changes from DMA to crypto
+
cxset(0x01);
−
cxset(0x01);
−
u32 crypt_reg_flag = 0x00060000;
+
u32 crypto_reg_flag = 0x00060000;
−
u32 blob4_flcn_os_img_hash_addr = 0;
+
u32 blob4_flcn_os_img_hash_addr = 0;
−
// Transfer data to crypto register c6
+
// Transfer data to crypto register c6
−
xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag));
+
xdst(0, (blob4_flcn_os_img_hash_addr | crypto_reg_flag));
−
// fuc5 crypt cxset instruction
+
// The next xfer instruction will be overridden
−
// The next xfer instruction will be overridden
+
// and target changes from DMA to crypto
−
// and target changes from DMA to crypto
+
cxset(0x01);
−
cxset(0x01);
−
// Wait for all data loads/stores to finish
+
// Wait for all data loads/stores to finish
−
xdwait();
+
xdwait();
−
cmov(c7, c6);
+
cmov($c7, $c6);
−
cxor(c7, c7);
+
cxor($c7, $c7);
−
// fuc5 crypt cauth instruction
+
// Set auth_addr to 0x100, auth_size to 0x1300,
−
// Set auth_addr to 0x100, auth_size to 0x1300,
+
// bit 16 (use_secret) and bit 17 (is_encrypted)
−
// bit 16 (is_secret) and bit 17 (is_encrypted)
+
$cauth = ((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08));
−
cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08));
−
// Clear interrupt flags
+
// Clear interrupt flags
−
*(u8 *)flags_ie0 = 0;
+
$flags.ie0 = 0;
−
*(u8 *)flags_ie1 = 0;
+
$flags.ie1 = 0;
−
// Jump to the SecureBoot blob's Falcon OS image
+
// Jump to the SecureBoot blob's Falcon OS image
−
exec_flcn_os_img();
+
exec_secboot();
−
return 0x0F0F0F0F;
+
return 0x0F0F0F0F;
+
</pre>
+
+
==== exec_secboot ====
== Key data ==
== Key data ==