Boot Process
TSEC is configured and initialized by the first bootloader during key generation.
[6.2.0+] TSEC is now configured at the end of the first bootloader's main function.
Initialization
During this stage several clocks are programmed.
// Program the HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X enable_host1x_clkrst(); // Program the TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC enable_tsec_clkrst(); // Program the SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE enable_sor_safe_clkrst(); // Program the SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 enable_sor0_clkrst(); // Program the SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 enable_sor1_clkrst(); // Program the KFUSE clock resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE enable_kfuse_clkrst();
Configuration
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
// Clear the Falcon DMA control register *(u32 *)FALCON_DMACTL = 0; // Enable Falcon IRQs *(u32 *)FALCON_IRQMSET = 0xFFF2; // Enable Falcon IRQs *(u32 *)FALCON_IRQDEST = 0xFFF0; // Enable Falcon interfaces *(u32 *)FALCON_ITFEN = 0x03; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle();
Firmware loading
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
// Set DMA transfer base address to 0x40011900 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x400119; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0xF00) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
[6.2.0+] The transfer base address and size of the Falcon firmware code changed.
// Set DMA transfer base address to 0x40010E00 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x40010E; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0x2900) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
Firmware booting
Falcon is booted up and the first bootloader waits for it to finish.
// Set magic value in host1x scratch space *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle(); u32 boot_res = 0; // The bootloader allows the TSEC two seconds from this point to do its job u32 maximum_time = read_timer() + 2000000; while (!boot_res) { // Read boot result from scratch1 MMIO boot_res = *(u32 *)FALCON_SCRATCH1; // Read from TIMERUS_CNTR_1US (microseconds from boot) u32 current_time = read_timer(); // Booting is taking too long if (current_time > maximum_time) panic(); } // Invalid boot result was returned if (boot_resĀ != 0xB0B0B0B0) panic();
[6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.
// Set magic value in host1x scratch space *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Infinite loop deadlock();
TSEC key generation
The TSEC key is generated by reading SOR1 registers modified by the Falcon CPU.
// Clear magic value in host1x scratch space *(u32 *)0x50003300 = 0; // Read TSEC key u32 tsec_key[4]; tsec_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB; tsec_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB; tsec_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB; tsec_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB; // Clear SOR1 registers *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0; if (out_size < 0x10) out_size = 0x10; // Copy back the TSEC key memcpy(out_buf, tsec_key, out_size);
[6.2.0+] This is now done inside an encrypted TSEC payload.
Cleanup
Clocks and resets are disabled before returning.
// Deprogram KFUSE clock and resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE disable_kfuse_clkrst(); // Deprogram SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 disable_sor1_clkrst(); // Deprogram SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 disable_sor0_clkrst(); // Deprogram SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE disable_sor_safe_clkrst(); // Deprogram TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC disable_tsec_clkrst(); // Deprogram HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X disable_host1x_clkrst(); return;
TSEC Firmware
The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs (names are unofficial): Boot (unencrypted and unauthenticated code), KeygenLdr (unencrypted and authenticated code), Keygen (encrypted and authenticated code) and key data.
[6.2.0+] There are now 2 new blobs (names are unofficial): SecureBootLdr (unencrypted and unauthenticated code), SecureBoot (part unencrypted and unauthenticated code, part encrypted and authenticated code) and key data.
Firmware can be disassembled with envytools' envydis:
envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt
Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.
Boot
During this stage, key data is loaded and KeygenLdr is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the key used by the first bootloader.
[6.2.0+] During this stage, key data is loaded and execution jumps to SecureBootLdr.
Initialization
Falcon sets up it's own stack pointer.
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Set the stack pointer *(u32 *)sp = data_seg_size;
Main
Falcon reads the key data and then authenticates, loads and executes KeygenLdr which sets the TSEC key.
u32 boot_base_addr = 0; u8 key_data_buf[0x7C]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x7C; read_code(key_data_buf, key_data_addr, key_data_size); // Read the next code segment into boot base u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); u32 boot_res = 0; bool is_done = false; u32 time = 0; bool is_blob_dec = false; while (!is_done) { if (time > 4000000) { // Write boot failed (timeout) magic to FALCON_SCRATCH1 boot_res = 0xC0C0C0C0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01) u32 key_version = *(u32 *)FALCON_SCRATCH0; if (key_version == 0x64) { // Skip all next stages boot_res = 0xB0B0B0B0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } else { if (key_version > 0x03) boot_res = 0xD0D0D0D0; // Invalid key version else if (key_version == 0) boot_res = 0xB0B0B0B0; // No keys used else { u32 key_buf[0x7C]; // Copy key data memcpy(key_buf, key_data_buf, 0x7C); u32 crypt_reg_flag = 0x00060000; u32 blob1_hash_addr = key_buf + 0x20; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size cauth((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); // Transfer data to crypto register c6 xdst(0, (blob1_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); // Jump to KeygenLdr u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec); is_blob_dec = true; // Set this to prevent decrypting again // Set boot finish magic on success if (keygenldr_res == 0) boot_res = 0xB0B0B0B0 } // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = boot_res; if (boot_res == 0xB0B0B0B0) is_done = true; } time++; } // Overwrite the TSEC key in SOR1 registers // This has no effect because the KeygenLdr locks out the TSEC DMA engine tsec_set_key(key_data_buf); return boot_res;
[6.2.0+] Falcon reads the key data and jumps to SecureBootLdr.
u8 key_data_buf[0x84]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x84; read_code(key_data_buf, key_data_addr, key_data_size); // Calculate the next blob's address u32 blob4_size = *(u32 *)(key_data_buf + 0x80); u32 blob0_size = *(u32 *)(key_data_buf + 0x70); u32 blob1_size = *(u32 *)(key_data_buf + 0x74); u32 blob2_size = *(u32 *)(key_data_buf + 0x78); u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size); // Jump to next blob (void *)blob3_addr(); return 0;
tsec_set_key
This method takes key_data_buf (a 16 bytes buffer) as argument and writes its contents to SOR1 registers.
// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40) *(u32 *)TSEC_DMA_UNK = 0xFFF; // Read the key's words u32 key0 = *(u32 *)(key_data_buf + 0x00); u32 key1 = *(u32 *)(key_data_buf + 0x04); u32 key2 = *(u32 *)(key_data_buf + 0x08); u32 key3 = *(u32 *)(key_data_buf + 0x0C); u32 result = 0; // Write to SOR1 register result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3); // Failed to write if (result) return result; return result;
tsec_dma_write
This method takes addr and value as arguments and performs a DMA write using TSEC MMIO.
u32 result = 0; // Wait for TSEC DMA engine // This waits for bit 0x0C in TSEC_DMA_CMD to be 0 result = wait_tsec_dma(); // Wait failed if (result) return 1; // Set the destination address // This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40) *(u32 *)TSEC_DMA_ADDR = addr; // Set the value // This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40) *(u32 *)TSEC_DMA_VAL = value; // Start transfer? // This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40) *(u32 *)TSEC_DMA_CMD = 0x800000F2; // Wait for TSEC DMA engine // This waits for bit 0x0C in TSEC_DMA_CMD to be 0 result = wait_tsec_dma(); // Wait failed if (result) return 1; return 0;
KeygenLdr
This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Keygen.
Main
// Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; *(u8 *)flags_ie2 = 0; // fuc5 crypt cxset instruction // Clear overrides? cxset(0x80); // fuc5 crypt cauth instruction // Clear bit 0x13 in cauth cauth(cauth_old & ~(1 << 0x13)); // Set the target port for memory transfers xtargets(0); // Wait for all data loads/stores to finish xdwait(); // Wait for all code loads to finish xcwait(); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); // Transfer data to crypto register c0 // This should clear any leftover data xdst(0, 0); // Wait for all data loads/stores to finish xdwait(); // Clear all crypto registers, except c6 which is used for auth cxor(c0, c0); cmov(c1, c0); cmov(c2, c0); cmov(c3, c0); cmov(c4, c0); cmov(c5, c0); cmov(c7, c0); // Clear TSEC_TEGRA_CTL_TKFI_KFUSE // This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40) *(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF; // Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD // This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40) *(u32 *)TSEC_SCP_CTL_PKEY |= 0x01; u32 is_pkey_loaded = 0; // Wait for TSEC_SCP_CTL_PKEY_LOADED while (!is_pkey_loaded) is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Check stack bounds if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800)) exit(); // Decrypt and load Keygen stage load_keygen(key_buf, key_version, is_blob_dec); // fuc5 crypt csigclr instruction // Clears the cauth signature csigclr(); // Clear all crypto registers cxor(c0, c0); cxor(c1, c1); cxor(c2, c2); cxor(c3, c3); cxor(c4, c4); cxor(c5, c5); cxor(c6, c6); cxor(c7, c7); // Exit Authenticated Mode // This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40) *(u32 *)TSEC_SCP_CTL_AUTH_MODE = 0; return;
load_keygen
u32 res = 0; u32 boot_base_addr = 0; u32 blob0_addr = 0; u32 blob0_size = *(u32 *)(key_buf + 0x70); // Load blob0 code again read_code(boot_base_addr, blob0_addr, blob0_size); // Generate "CODE_SIG_01" key into c4 crypto register gen_usr_key(0, 0); // Encrypt buffer with c4 u8 sig_key[0x10]; enc_buf(sig_key, blob0_size); u32 src_addr = boot_base_addr; u32 src_size = blob0_size; u32 iv_addr = sig_key; u32 dst_addr = sig_key; u32 mode = 0x02; // AES-CMAC u32 version = 0; // Do AES-CMAC over blob0 code do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Compare the hashes if (memcmp(dst_addr, key_buf + 0x10, 0x10)) { res = 0xDEADBEEF; return res; } u32 blob1_size = *(u32 *)(key_buf + 0x74); // Decrypt Keygen blob if needed if (!is_blob_dec) { // Read Stage2's size from key buffer u32 blob2_size = *(u32 *)(key_buf + 0x78); // Check stack bounds if (*(u32 *)sp > blob2_size) { u32 boot_base_addr = 0; u32 blob2_virt_addr = blob0_size + blob1_size; u32 blob2_addr = blob2_virt_addr + 0x100; // Read Keygen encrypted blob read_code(boot_base_addr, blob2_addr, blob2_size); // Generate "CODE_ENC_01" key into c4 crypt register gen_usr_key(0x01, 0x01); u32 src_addr = boot_base_addr; u32 src_size = blob2_size; u32 iv_addr = key_buf + 0x40; u32 dst_addr = boot_base_addr; u32 mode = 0; // AES-128-ECB u32 version = 0; // Decrypt Keygen blob do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Upload the next code segment into Falcon's CODE region bool use_secret = true; upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret); // Clear out the decrypted blob memset(boot_base_addr, 0, blob2_size); } } // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); u32 crypt_reg_flag = 0x00060000; u32 blob2_hash_addr = key_buf + 0x30; // Transfer data to crypto register c6 xdst(0, (blob2_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); // Save previous cauth value u32 c_old = cauth_old; // fuc5 crypt cauth instruction // Set auth_addr to blob2_virt_addr and auth_size to blob2_size cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10)); u32 hovi_key_addr = 0; // Select next stage key if (key_version == 0x01) // Use HOVI_EKS_01 hovi_key_addr = key_buf + 0x50; else if (key_version == 0x02) // Use HOVI_COMMON_01 hovi_key_addr = key_buf + 0x60; else if (key_version == 0x03) // Use debug key (empty) hovi_key_addr = key_buf + 0x00; else res = 0xD0D0D0D0 // Jump to Keygen if (hovi_key_addr) res = exec_keygen(hovi_key_addr, key_version); // Clear out key data memset(key_buf, 0, 0x7C); // fuc5 crypt cauth instruction // Restore previous cauth value cauth(c_old); return res;
gen_usr_key
This method takes type and mode as arguments and generates a key.
u8 seed_buf[0x10]; // Read a 16 bytes seed based on supplied type /* Type 0: "CODE_SIG_01" + null padding Type 1: "CODE_ENC_01" + null padding */ get_seed(seed_buf, type); // This will write the seed into crypto register c0 crypt_store(0, seed_buf); // fuc5 csecret instruction // Load selected secret into crypto register c1 csecret(c1, 0x26); // fuc5 ckeyreg instruction // Bind c1 register as the key for enc/dec operations ckeyreg(c1); // fuc5 cenc instruction // Encrypt seed_buf (in c0) using keyreg value as key into c1 cenc(c1, c0); // fuc5 csigenc instruction // Encrypt c1 register with the auth signature stored in c6 csigenc(c1, c1); // Copy the result into c4 (will be used as key) cmov(c4, c1); // Do key expansion (for decryption) if (modeĀ != 0) ckexp(c4, c4); // fuc5 ckexp instruction return;
enc_buffer
This method takes buf (a 16 bytes buffer) and size as arguments and encrypts the supplied buffer.
// Set first 3 words to null *(u32 *)(buf + 0x00) = 0; *(u32 *)(buf + 0x04) = 0; *(u32 *)(buf + 0x08) = 0; // Swap halves (b16, b32 and b16 again) hswap(size); // Store the size as the last word *(u32 *)(buf + 0x0C) = size; // This will write buf into crypto register c3 crypt_store(0x03, buf); // fuc5 ckeyreg instruction // Bind c4 register (from keygen) as the key for enc/dec operations ckeyreg(c4); // fuc5 cenc instruction // Encrypt buf (in c3) using keyreg value as key into c5 cenc(c5, c3); // This will read into buf from crypto register c5 crypt_load(0x05, buf); return;
do_crypto
This is the method responsible for all crypto operations performed during KeygenLdr. It takes src_addr, src_size, iv_addr, dst_addr, mode and use_imem as arguments.
// Check for invalid source data size if (!src_size || (src_size & 0x0F)) exit(); // Check for invalid source data address if (src_addr & 0x0F) exit(); // Check for invalid destination data address if (dst_addr & 0x0F) exit(); // Use IV if available if (iv_addr) { // This will write the iv_addr into crypto register c5 crypt_store(0x05, iv_addr); } else { // Clear c5 register (use null IV) cxor(c5, c5); } // Use key in c4 ckeyreg(c4); // AES-128-CBC decrypt if (mode == 0x00) { // Create crypto script with 5 instructions cs0begin(0x05); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cdec(c2, c3); // Decrypt from c3 into c2 cxor(c5, c2); // XOR c2 with c5 and store in c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 cmov(c5, c3); // Move c3 into c5 } else if (mode == 0x01) // AES-128-CBC encrypt { // Create crypto script with 4 instructions cs0begin(0x04); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cxor(c3, c5); // XOR c5 with c3 and store in c3 cenc(c5, c3); // Encrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else if (mode == 0x02) // AES-CMAC { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cxor(c5, c3); // XOR c5 with c3 and store in c3 cenc(c5, c5); // Encrypt from c5 into c5 } else if (mode == 0x03) // AES-128-ECB decrypt { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cdec(c5, c3); // Decrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else if (mode == 0x04) // AES-128-ECB encrypt { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cenc(c5, c3); // Encrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else return; // Main loop while (src_size > 0) { u32 blk_count = (src_size >> 0x04); if (blk_count > 0x10) blk_count = 0x10; // Check size align if (blk_count & (blk_count - 0x01)) blk_count = 0x01; u32 blk_size = (blk_count << 0x04); u32 crypt_xfer_src = 0; u32 crypt_xfer_dst = 0; if (block_size == 0x20) { crypt_xfer_src = (0x00030000 | src_addr); crypt_xfer_dst = (0x00030000 | dst_addr); // Execute crypto script 2 times (1 for each block) cs0exec(0x02); } if (block_size == 0x40) { crypt_xfer_src = (0x00040000 | src_addr); crypt_xfer_dst = (0x00040000 | dst_addr); // Execute crypto script 4 times (1 for each block) cs0exec(0x04); } if (block_size == 0x80) { crypt_xfer_src = (0x00050000 | src_addr); crypt_xfer_dst = (0x00050000 | dst_addr); // Execute crypto script 8 times (1 for each block) cs0exec(0x08); } if (block_size == 0x100) { crypt_xfer_src = (0x00060000 | src_addr); crypt_xfer_dst = (0x00060000 | dst_addr); // Execute crypto script 16 times (1 for each block) cs0exec(0x10); } else { crypt_xfer_src = (0x00020000 | src_addr); crypt_xfer_dst = (0x00020000 | dst_addr); // Execute crypto script 1 time (1 for each block) cs0exec(0x01); // Ensure proper block size block_size = 0x10; } // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto input/output stream if (use_imem) cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream else cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream // Transfer data into the crypto input/output stream xdst(crypt_xfer_src, crypt_xfer_src); // AES-CMAC only needs one more xfer instruction if (mode == 0x02) { // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto input/output stream if (use_imem) cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream else cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream // Wait for all data loads/stores to finish xdwait(); } else // AES enc/dec needs 2 more xfer instructions { // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto input/output stream if (use_imem) cxset(0xA2); // Flag 0xA0 is falcon imem <-> crypto input/output stream else cxset(0x22); // Flag 0x20 is external mem <-> crypto input/output stream // Transfer data from the crypto input/output stream xdld(crypt_xfer_dst, crypt_xfer_dst); // Wait for all data loads/stores to finish xdwait(); // Increase the destination address by block size dst_addr += block_size; } // Increase the source address by block size src_addr += block_size; // Decrease the source size by block size src_size -= block_size; } // AES-CMAC result is in c5 if (mode == 0x02) { // This will read into dst_addr from crypto register c5 crypt_load(0x05, dst_addr); } return;
Keygen
This stage is decrypted by KeygenLdr using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC key.
SecureBootLdr
[6.2.0+] This was introduced to try to recover the secure boot from the RCM vulnerability.
This stage starts by authenticating and executing KeygenLdr which in turn authenticates, decrypts and executes Keygen (both blobs remain unchanged from previous firmware versions). After the TSEC key has been generated, execution returns to this stage which then parses and executes SecureBoot.
Main
u8 key_data_buf[0x84]; u8 tmp_key_data_buf[0x84]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x84; read_code(key_data_buf, key_data_addr, key_data_size); // Read the KeygenLdr blob from memory u32 boot_base_addr = 0; u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); // Backup the key data memcpy(tmp_key_data_buf, key_data_buf, 0x84); // Save previous cauth value u32 c_old = cauth_old; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size cauth((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); u32 crypt_reg_flag = 0x00060000; u32 blob1_hash_addr = tmp_key_data_buf + 0x20; // Transfer data to crypto register c6 xdst(0, (blob1_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); u32 key_version = 0x01; bool is_blob_dec = false; // Jump to KeygenLdr u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec); // Set boot finish magic on success if (keygenldr_res == 0) keygenldr_res = 0xB0B0B0B0 // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = keygenldr_res; if (keygenldr_resĀ != 0xB0B0B0B0) return keygenldr_res; // fuc5 crypt cauth instruction // Restore previous cauth value cauth(c_old); u8 flcn_hdr_buf[0x18]; u8 flcn_os_hdr_buf[0x10]; blob1_size = *(u32 *)(key_data_buf + 0x74); u32 blob2_size = *(u32 *)(key_data_buf + 0x78); u32 blob0_size = *(u32 *)(key_data_buf + 0x70); // Read the SecureBoot blob's Falcon header from memory u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size); read_code(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18); blob1_size = *(u32 *)(key_data_buf + 0x74); blob2_size = *(u32 *)(key_data_buf + 0x78); blob0_size = *(u32 *)(key_data_buf + 0x70); u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C); // Read the SecureBoot blob's Falcon OS header from memory u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size); read_code(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10); blob1_size = *(u32 *)(key_data_buf + 0x74); blob2_size = *(u32 *)(key_data_buf + 0x78); blob0_size = *(u32 *)(key_data_buf + 0x70); u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10); u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); // Read the SecureBoot blob's Falcon OS image from memory u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size); read_code(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size); // Upload the SecureBoot's Falcon OS image boot stub code segment into Falcon's CODE region u32 blob4_flcn_os_boot_virt_addr = 0; u32 blob4_flcn_os_boot_size = 0x100; use_secret = false; upload_code(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret); flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); // Upload the SecureBoot blob's Falcon OS encrypted image code segment into Falcon's CODE region u32 blob4_flcn_os_img_virt_addr = 0x100; u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100); use_secret = true; upload_code(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret); // Wait for all code loads to finish xcwait(); blob1_size = *(u32 *)(key_data_buf + 0x74); blob2_size = *(u32 *)(key_data_buf + 0x78); blob0_size = *(u32 *)(key_data_buf + 0x70); flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10); u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08); // Read the SecureBoot blob's falcon OS image's hash from memory u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size); read_code(0, blob4_flcn_os_img_hash_addr, 0x10); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x03; data_seg_size &= 0x3FC0; u32 data_addr = 0x10; // Clear all data except the first 0x10 bytes (SecureBoot blob's Falcon OS image's hash) for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++) { *(u32 *)(data_addr) = 0; data_addr += 0x04; } // Clear all crypto registers cxor(c0, c0); cxor(c1, c1); cxor(c2, c2); cxor(c3, c3); cxor(c4, c4); cxor(c5, c5); cxor(c6, c6); cxor(c7, c7); // fuc5 crypt csigclr instruction // Clears the cauth signature csigclr(); // Jump to SecureBoot exec_payload(); return 0xB0B0B0B0;
SecureBoot
[6.2.0+] This was introduced to try to recover the secure boot from the RCM vulnerability.
This stage prepares the stack then authenticates, decrypts and executes the SecureBoot blob's Falcon OS image.
Main
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x01; data_seg_size &= 0xFF00; // Set the stack pointer *(u32 *)sp = data_seg_size; // Jump to the SecureBoot blob's Falcon OS image boot stub exec_flcn_os_boot(); // Halt execution exit(); return;
exec_flcn_os_boot
// Read the transfer base address from IO space u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE; // Copy transfer base address to data memory u32 scratch_data_addr = 0x300; *(u32 *)scratch_data_addr = xfer_ext_base_addr; // Set the transfer base address xcbase(xfer_ext_base_addr); // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto cxset(0x01); u32 crypt_reg_flag = 0x00060000; u32 blob4_flcn_os_img_hash_addr = 0; // Transfer data to crypto register c6 xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag)); // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto cxset(0x01); // Wait for all data loads/stores to finish xdwait(); cmov(c7, c6); cxor(c7, c7); // fuc5 crypt cauth instruction // Set auth_addr to 0x100, auth_size to 0x1300, // bit 16 (is_secret) and bit 17 (is_encrypted) cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08)); // Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; // Jump to the SecureBoot blob's Falcon OS image exec_flcn_os_img(); return 0x0F0F0F0F;
Key data
Small buffer stored after the Boot blob and used across all stages.
Offset | Size | Description |
---|---|---|
0x00 | 0x10 | Debug key (empty) |
0x10 | 0x10 | blob0 (Boot) auth hash |
0x20 | 0x10 | blob1 (KeygenLdr) auth hash |
0x30 | 0x10 | blob2 (Keygen) auth hash |
0x40 | 0x10 | blob2 (Keygen) AES IV |
0x50 | 0x10 | HOVI EKS seed |
0x60 | 0x10 | HOVI COMMON seed |
0x70 | 0x04 | blob0 (Boot) size |
0x74 | 0x04 | blob1 (KeygenLdr) size |
0x78 | 0x04 | blob2 (Keygen) size |
0x7C | 0x04 | [6.2.0+] blob3 (SecureBootLdr) size |
0x80 | 0x04 | [6.2.0+] blob4 (SecureBoot) size |