TSEC
TSEC (Tegra Security Co-processor) is a dedicated unit powered by a NVIDIA Falcon microprocessor with crypto extensions.
Driver
A host driver for communicating with the TSEC is mapped to physical address 0x54500000 with a total size of 0x40000 bytes and exposes several registers.
Registers
Registers from 0x54500000 to 0x54501000 are used to configure values for the host interface (HOST1X).
Registers from 0x54501000 to 0x54502000 are a MMIO window for communicating with the Falcon microprocessor. From this range, the subset of registers from 0x54501400 to 0x54501FE8 are specific to the TSEC.
Name | Address | Width |
---|---|---|
TSEC_THI_UNK0 | 0x54500020 | 0x04 |
TSEC_THI_INT_STATUS | 0x54500078 | 0x04 |
TSEC_THI_INT_STATUS2 | 0x5450007C | 0x04 |
TSEC_THI_UNK1 | 0x54500084 | 0x04 |
TSEC_THI_SLCG_OVERRIDE_HIGH_A | 0x54500088 | 0x04 |
TSEC_THI_SLCG_OVERRIDE_LOW_A | 0x5450008C | 0x04 |
TSEC_THI_CLK_OVERRIDE | 0x54500E00 | 0x04 |
FALCON_IRQSSET | 0x54501000 | 0x04 |
FALCON_IRQSCLR | 0x54501004 | 0x04 |
FALCON_IRQSTAT | 0x54501008 | 0x04 |
FALCON_IRQMODE | 0x5450100C | 0x04 |
FALCON_IRQMSET | 0x54501010 | 0x04 |
FALCON_IRQMCLR | 0x54501014 | 0x04 |
FALCON_IRQMASK | 0x54501018 | 0x04 |
FALCON_IRQDEST | 0x5450101C | 0x04 |
FALCON_SCRATCH0 | 0x54501040 | 0x04 |
FALCON_SCRATCH1 | 0x54501044 | 0x04 |
FALCON_ITFEN | 0x54501048 | 0x04 |
FALCON_IDLESTATE | 0x5450104C | 0x04 |
FALCON_CURCTX | 0x54501050 | 0x04 |
FALCON_NXTCTX | 0x54501054 | 0x04 |
FALCON_SCRATCH2 | 0x54501080 | 0x04 |
FALCON_SCRATCH3 | 0x54501084 | 0x04 |
FALCON_CGCTL | 0x545010A0 | 0x04 |
FALCON_ENGCTL | 0x545010A4 | 0x04 |
FALCON_CPUCTL | 0x54501100 | 0x04 |
FALCON_BOOTVEC | 0x54501104 | 0x04 |
FALCON_HWCFG | 0x54501108 | 0x04 |
FALCON_DMACTL | 0x5450110C | 0x04 |
FALCON_DMATRFBASE | 0x54501110 | 0x04 |
FALCON_DMATRFMOFFS | 0x54501114 | 0x04 |
FALCON_DMATRFCMD | 0x54501118 | 0x04 |
FALCON_DMATRFFBOFFS | 0x5450111C | 0x04 |
FALCON_CPUCTL_ALIAS | 0x54501130 | 0x04 |
FALCON_EXTERRADDR | 0x54501168 | 0x04 |
FALCON_EXTERRSTAT | 0x5450116C | 0x04 |
FALCON_CG2 | 0x5450117C | 0x04 |
FALCON_CODE_INDEX | 0x54501180 | 0x04 |
FALCON_CODE | 0x54501184 | 0x04 |
FALCON_CODE_VIRT_ADDR | 0x54501188 | 0x04 |
FALCON_DATA_INDEX0 | 0x545011C0 | 0x04 |
FALCON_DATA0 | 0x545011C4 | 0x04 |
FALCON_DATA_INDEX1 | 0x545011C8 | 0x04 |
FALCON_DATA1 | 0x545011CC | 0x04 |
FALCON_DATA_INDEX2 | 0x545011D0 | 0x04 |
FALCON_DATA2 | 0x545011D4 | 0x04 |
FALCON_DATA_INDEX3 | 0x545011D8 | 0x04 |
FALCON_DATA3 | 0x545011DC | 0x04 |
FALCON_DATA_INDEX4 | 0x545011E0 | 0x04 |
FALCON_DATA4 | 0x545011E4 | 0x04 |
FALCON_DATA_INDEX5 | 0x545011E8 | 0x04 |
FALCON_DATA5 | 0x545011EC | 0x04 |
FALCON_DATA_INDEX6 | 0x545011F0 | 0x04 |
FALCON_DATA6 | 0x545011F4 | 0x04 |
FALCON_DATA_INDEX7 | 0x545011F8 | 0x04 |
FALCON_DATA7 | 0x545011FC | 0x04 |
FALCON_ICD_CMD | 0x54501200 | 0x04 |
FALCON_ICD_ADDR | 0x54501204 | 0x04 |
FALCON_ICD_WDATA | 0x54501208 | 0x04 |
FALCON_ICD_RDATA | 0x5450120C | 0x04 |
FALCON_SCTL | 0x54501240 | 0x04 |
TSEC_SCP_CTL_UNK0 | 0x54501400 | 0x04 |
TSEC_SCP_CTL_UNK1 | 0x54501404 | 0x04 |
TSEC_SCP_CTL_STAT | 0x54501408 | 0x04 |
TSEC_SCP_CTL_AUTH_MODE | 0x5450140C | 0x04 |
TSEC_SCP_CTL_UNK2 | 0x54501410 | 0x04 |
TSEC_SCP_CTL_PKEY | 0x54501418 | 0x04 |
TSEC_SCP_CTL_UNK3 | 0x54501420 | 0x04 |
TSEC_SCP_CTL_UNK4 | 0x54501428 | 0x04 |
TSEC_SCP_CTL_UNK5 | 0x54501430 | 0x04 |
TSEC_SCP_UNK0 | 0x54501454 | 0x04 |
TSEC_SCP_UNK1 | 0x54501458 | 0x04 |
TSEC_SCP_UNK2 | 0x54501470 | 0x04 |
TSEC_SCP_UNK3 | 0x54501480 | 0x04 |
TSEC_SCP_UNK4 | 0x54501490 | 0x04 |
TSEC_UNK0 | 0x54501500 | 0x04 |
TSEC_UNK1 | 0x54501504 | 0x04 |
TSEC_UNK2 | 0x5450150C | 0x04 |
TSEC_UNK3 | 0x54501510 | 0x04 |
TSEC_UNK4 | 0x54501514 | 0x04 |
TSEC_UNK5 | 0x54501518 | 0x04 |
TSEC_UNK6 | 0x5450151C | 0x04 |
TSEC_UNK7 | 0x54501528 | 0x04 |
TSEC_UNK8 | 0x5450152C | 0x04 |
TSEC_TFBIF_MCCIF_UNK0 | 0x54501600 | 0x04 |
TSEC_TFBIF_MCCIF_FIFOCTRL | 0x54501604 | 0x04 |
TSEC_TFBIF_MCCIF_UNK1 | 0x54501608 | 0x04 |
TSEC_TFBIF_MCCIF_UNK2 | 0x5450160C | 0x04 |
TSEC_TFBIF_UNK0 | 0x54501630 | 0x04 |
TSEC_TFBIF_UNK1 | 0x54501634 | 0x04 |
TSEC_TFBIF_UNK2 | 0x54501640 | 0x04 |
TSEC_DMA_CMD | 0x54501700 | 0x04 |
TSEC_DMA_ADDR | 0x54501704 | 0x04 |
TSEC_DMA_VAL | 0x54501708 | 0x04 |
TSEC_DMA_UNK | 0x5450170C | 0x04 |
TSEC_TEGRA_UNK0 | 0x54501800 | 0x04 |
TSEC_TEGRA_UNK1 | 0x54501824 | 0x04 |
TSEC_TEGRA_UNK2 | 0x54501828 | 0x04 |
TSEC_TEGRA_UNK3 | 0x5450182C | 0x04 |
TSEC_TEGRA_CTL | 0x54501838 | 0x04 |
FALCON_IRQMSET
Used for configuring Falcon's IRQs.
FALCON_IRQDEST
Used for configuring Falcon's IRQs.
FALCON_SCRATCH0
MMIO register for reading/writing data to Falcon.
FALCON_SCRATCH1
MMIO register for reading/writing data to Falcon.
FALCON_ITFEN
Bits | Description |
---|---|
0 | FALCON_ITFEN_CTXEN |
1 | FALCON_ITFEN_MTHDEN |
Used for enabling/disabling Falcon interfaces.
FALCON_IDLESTATE
Bits | Description |
---|---|
0 | FALCON_IDLESTATE_FALCON_BUSY |
Used for detecting if Falcon is busy or not.
FALCON_CPUCTL
Bits | Description |
---|---|
0 | FALCON_CPUCTL_IINVAL |
1 | FALCON_CPUCTL_STARTCPU |
2 | FALCON_CPUCTL_SRESET |
3 | FALCON_CPUCTL_HRESET |
4 | FALCON_CPUCTL_HALTED |
5 | FALCON_CPUCTL_STOPPED |
Used for signaling the Falcon CPU.
FALCON_BOOTVEC
Takes the Falcon's boot vector address.
FALCON_DMACTL
Bits | Description |
---|---|
0 | FALCON_DMACTL_REQUIRE_CTX |
1 | FALCON_DMACTL_DMEM_SCRUBBING |
2 | FALCON_DMACTL_IMEM_SCRUBBING |
3-6 | FALCON_DMACTL_DMAQ_NUM |
7 | FALCON_DMACTL_SECURE_STAT |
Used for configuring the Falcon's DMA engine.
FALCON_DMATRFBASE
Takes the host's base address for transferring data to/from the Falcon (DMA).
FALCON_DMATRFMOFFS
Takes the offset for the host's source memory being transferred.
FALCON_DMATRFCMD
Bits | Description |
---|---|
0 | FALCON_DMATRFCMD_FULL |
1 | FALCON_DMATRFCMD_IDLE (this is set if the engine is idle) |
2-3 | FALCON_DMATRFCMD_SEC |
4 | FALCON_DMATRFCMD_IMEM |
5 | FALCON_DMATRFCMD_WRITE |
8-10 | FALCON_DMATRFCMD_SIZE |
12-14 | FALCON_DMATRFCMD_CTXDMA |
Used for configuring DMA transfers.
FALCON_DMATRFFBOFFS
Takes the offset for Falcon's target memory being transferred.
TSEC_SCP_CTL_STAT
Bits | Description |
---|---|
20 | TSEC_SCP_CTL_STAT_DEBUG_MODE |
TSEC_SCP_CTL_PKEY
Bits | Description |
---|---|
0 | TSEC_SCP_CTL_PKEY_REQUEST_RELOAD |
1 | TSEC_SCP_CTL_PKEY_LOADED |
TSEC_DMA_CMD
Bits | Description |
---|---|
0 | TSEC_DMA_CMD_READ |
1 | TSEC_DMA_CMD_WRITE |
4-7 | TSEC_DMA_CMD_UNK |
12 | TSEC_DMA_CMD_BUSY |
31 | TSEC_DMA_CMD_INIT |
A DMA read/write operation requires bits TSEC_DMA_CMD_INIT and TSEC_DMA_CMD_READ/TSEC_DMA_CMD_WRITE to be set in TSEC_DMA_CMD.
During the transfer, the TSEC_DMA_CMD_BUSY bit is set.
TSEC_DMA_ADDR
Takes the address for DMA transfers between TSEC and HOST1X (master and clients).
TSEC_DMA_VAL
Takes the value for DMA transfers between TSEC and HOST1X (master and clients).
TSEC_DMA_UNK
Always 0xFFF.
TSEC_TEGRA_CTL
Bits | Description |
---|---|
16 | TSEC_TEGRA_CTL_TKFI_KFUSE |
17 | TSEC_TEGRA_CTL_TKFI_RESTART_FSM_KFUSE |
24 | TSEC_TEGRA_CTL_TMPI_FORCE_IDLE_INPUTS_I2C |
25 | TSEC_TEGRA_CTL_TMPI_RESTART_FSM_HOST1X |
26 | TSEC_TEGRA_CTL_TMPI_RESTART_FSM_APB |
27 | TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C |
Boot Process
TSEC is configured and initialized by the first bootloader during key generation (sub_400114FC).
Initialization
During this stage several clocks are programmed.
// Program the HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X enable_host1x_clkrst(); // Program the TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC enable_tsec_clkrst(); // Program the SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE enable_sor_safe_clkrst(); // Program the SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 enable_sor0_clkrst(); // Program the SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 enable_sor1_clkrst(); // Program the KFUSE clock resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE enable_kfuse_clkrst();
Configuration
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
// Clear the Falcon DMA control register *(u32 *)FALCON_DMACTL = 0; // Enable Falcon IRQs *(u32 *)FALCON_IRQMSET = 0xFFF2; // Enable Falcon IRQs *(u32 *)FALCON_IRQDEST = 0xFFF0; // Enable Falcon interfaces *(u32 *)FALCON_ITFEN = 0x03; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle();
Firmware loading
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
// Set DMA transfer base address to 0x40011900 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x400119; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0xF00) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
Firmware booting
Falcon is booted up and the first bootloader waits for it to finish.
// Set something in unknown host1x channel 0 sync register (HOST1X_SYNC_UNK_300) // This appears to grant TSEC exclusive access to host1x *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle(); u32 boot_res = 0; // The bootloader allows the TSEC two seconds from this point to do its job u32 maximum_time = read_timer() + 2000000; while (!boot_res) { // Read boot result from scratch1 MMIO boot_res = *(u32 *)FALCON_SCRATCH1; // Read from TIMERUS_CNTR_1US (microseconds from boot) u32 current_time = read_timer(); // Booting is taking too long if (current_time > maximum_time) panic(); } // Invalid boot result was returned if (boot_resĀ != 0xB0B0B0B0) panic();
Device key generation
The TSEC device key is generated by reading SOR1 registers modified by the Falcon CPU.
// Clear something in unknown host1x channel 0 sync register (HOST1X_SYNC_UNK_300) // This appears to revoke TSEC's exclusive access to host1x *(u32 *)0x50003300 = 0; // Read TSEC device key u32 tsec_device_key[4]; tsec_device_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB; tsec_device_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB; tsec_device_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB; tsec_device_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB; // Clear SOR1 registers *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0; if (out_size < 0x10) out_size = 0x10; // Copy back the TSEC device key memcpy(out_buf, tsec_device_key, out_size);
Cleanup
Clocks and resets are disabled before returning.
// Deprogram KFUSE clock and resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE disable_kfuse_clkrst(); // Deprogram SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 disable_sor1_clkrst(); // Deprogram SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 disable_sor0_clkrst(); // Deprogram SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE disable_sor_safe_clkrst(); // Deprogram TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC disable_tsec_clkrst(); // Deprogram HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X disable_host1x_clkrst(); return;
TSEC Firmware
The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs: Stage0, Stage1, Stage2 and key data.
Firmware can be disassembled with envytools' envydis:
envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt
Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.
Stage 0
During this stage key data is loaded and Stage 1 is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader.
Initialization
Falcon sets up it's own stack pointer.
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Set the stack pointer *(u32 *)sp = data_seg_size;
Stage 1 loading
u32 boot_base_addr = 0; u32 key_data_buf[0x7C]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x7C; read_code(key_data_buf, key_data_addr, key_data_size); // Read the next code segment into boot base u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); u32 boot_res = 0; bool is_done = false; u32 time = 0; bool is_blob_dec = false; while (!is_done) { if (time > 4000000) { // Write boot failed (timeout) magic to FALCON_SCRATCH1 boot_res = 0xC0C0C0C0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01) u32 key_version = *(u32 *)FALCON_SCRATCH0; if (key_version == 0x64) { // Skip all next stages boot_res = 0xB0B0B0B0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } else { if (key_version > 0x03) boot_res = 0xD0D0D0D0; // Invalid key version else if (key_version == 0) boot_res = 0xB0B0B0B0; // No keys used else { u32 key_buf[0x7C]; // Copy key data memcpy(key_buf, key_data_buf, 0x7C); u32 crypt_reg_flag = 0x00060000; u32 blob1_hash_addr = key_buf + 0x20; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size cauth((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); // Transfer data to crypto register c6 xdst(0, (blob1_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); // Jump to Stage1 u32 stage1_res = exec_stage1(key_buf, key_version, is_blob_dec); is_blob_dec = true; // Set this to prevent decrypting again // Set boot finish magic on success if (stage1_res == 0) boot_res = 0xB0B0B0B0 } // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = boot_res; if (boot_res == 0xB0B0B0B0) is_done = true; } time++; } // Write TSEC device key to registers set_device_key(key_data_buf); return boot_res;
set_device_key
This method takes key_data_buf as argument and writes the TSEC key to SOR1 registers.
// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40) *(u32 *)TSEC_DMA_UNK = 0xFFF; // Read the key's words u32 key0 = *(u32 *)(key_data_buf + 0x00); u32 key1 = *(u32 *)(key_data_buf + 0x04); u32 key2 = *(u32 *)(key_data_buf + 0x08); u32 key3 = *(u32 *)(key_data_buf + 0x0C); u32 result = 0; // Write to SOR1 register result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3); // Failed to write if (result) return result; return result;
tsec_dma_write
This method takes addr and value as arguments and performs a DMA write using TSEC MMIO.
u32 result = 0; // Wait for TSEC DMA engine // This waits for bit 0x0C in TSEC_DMA_CMD to be 0 result = wait_tsec_dma(); // Wait failed if (result) return 1; // Set the destination address // This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40) *(u32 *)TSEC_DMA_ADDR = addr; // Set the value // This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40) *(u32 *)TSEC_DMA_VAL = value; // Start transfer? // This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40) *(u32 *)TSEC_DMA_CMD = 0x800000F2; // Wait for TSEC DMA engine // This waits for bit 0x0C in TSEC_DMA_CMD to be 0 result = wait_tsec_dma(); // Wait failed if (result) return 1; return 0;
Stage 1
This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Stage 2.
Crypto setup
// Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; *(u8 *)flags_ie2 = 0; // fuc5 crypt cxset instruction // Clear overrides? cxset(0x80); // fuc5 crypt cauth instruction // Clear bit 0x13 in cauth cauth(cauth_old & ~(1 << 0x13)); // Set the target port for memory transfers xtargets(0); // Wait for all data loads/stores to finish xdwait(); // Wait for all code loads to finish xcwait(); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); // Transfer data to crypto register c0 // This should clear any leftover data xdst(0, 0); // Wait for all data loads/stores to finish xdwait(); // Clear all crypto registers, except c6 which is used for auth cxor(c0, c0); cmov(c1, c0); cmov(c2, c0); cmov(c3, c0); cmov(c4, c0); cmov(c5, c0); cmov(c7, c0); // Clear TSEC_TEGRA_CTL_TKFI_KFUSE // This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40) *(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF; // Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD // This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40) *(u32 *)TSEC_SCP_CTL_PKEY |= 0x01; u32 is_pkey_loaded = 0; // Wait for TSEC_SCP_CTL_PKEY_LOADED while (!is_pkey_loaded) is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Check stack bounds if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800)) return; // Decrypt and load Stage2 load_stage2(key_buf, key_version, is_blob_dec); // Partially unknown fuc5 instruction // Likely forces a change of permissions cchmod(c0, c0); // Clear all crypto registers and propagate permissions cxor(c0, c0); cxor(c1, c1); cxor(c2, c2); cxor(c3, c3); cxor(c4, c4); cxor(c5, c5); cxor(c6, c6); cxor(c7, c7); // Exit Authenticated Mode // This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40) *(u32 *)TSEC_SCP_CTL_AUTH_MODE = 0; return;
Stage 2 loading
u32 res = 0; u32 boot_base_addr = 0; u32 blob0_addr = 0; u32 blob0_size = *(u32 *)(key_buf + 0x70); // Load blob0 code again read_code(boot_base_addr, blob0_addr, blob0_size); // Generate "CODE_SIG_01" key into c4 crypto register keygen(0, 0); // Encrypt buffer with c4 u32 sig_key[0x10]; enc_buf(sig_key, blob0_size); u32 src_addr = boot_base_addr; u32 src_size = blob0_size; u32 iv_addr = sig_key; u32 dst_addr = sig_key; u32 mode = 0x02; // AES-CMAC u32 version = 0; // Do AES-CMAC over blob0 code do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Compare the hashes if (memcmp(dst_addr, key_buf + 0x10, 0x10)) { res = 0xDEADBEEF; return res; } u32 blob1_size = *(u32 *)(key_buf + 0x74); // Decrypt Stage2 blob if needed if (!is_blob_dec) { // Read Stage2's size from key buffer u32 blob2_size = *(u32 *)(key_buf + 0x78); // Check stack bounds if (*(u32 *)sp > blob2_size) { u32 boot_base_addr = 0; u32 blob2_virt_addr = blob0_size + blob1_size; u32 blob2_addr = blob2_virt_addr + 0x100; // Read Stage2's encrypted blob read_code(boot_base_addr, blob2_addr, blob2_size); // Generate "CODE_ENC_01" key into c4 crypt register keygen(0x01, 0x01); u32 src_addr = boot_base_addr; u32 src_size = blob2_size; u32 iv_addr = key_buf + 0x40; u32 dst_addr = boot_base_addr; u32 mode = 0; // AES-128-ECB u32 version = 0; // Decrypt Stage2 do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Upload the next code segment into Falcon's CODE region bool use_secret = true; upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret); // Clear out the decrypted blob memset(boot_base_addr, 0, blob2_size); } } // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); u32 crypt_reg_flag = 0x00060000; u32 blob2_hash_addr = key_buf + 0x30; // Transfer data to crypto register c6 xdst(0, (blob2_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); // Save previous cauth value u32 c_old = cauth_old; // fuc5 crypt cauth instruction // Set auth_addr to blob2_virt_addr and auth_size to blob2_size cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10)); u32 hovi_key_addr = 0; // Select next stage key if (key_version == 0x01) // Use HOVI_EKS_01 hovi_key_addr = key_buf + 0x50; else if (key_version == 0x02) // Use HOVI_COMMON_01 hovi_key_addr = key_buf + 0x60; else if (key_version == 0x03) // Use empty key hovi_key_addr = key_buf + 0x00; else res = 0xD0D0D0D0 // Jump to Stage2 if (hovi_key_addr) res = exec_stage2(hovi_key_addr, key_version); // Clear out key data memset(key_buf, 0, 0x7C); // fuc5 crypt cauth instruction // Restore previous cauth value cauth(c_old); return res;
keygen
This method takes type and mode as arguments and generates a key.
u32 seed_buf[0x10]; // Read a 16 bytes seed based on supplied type /* Type 0: "CODE_SIG_01" + null padding Type 1: "CODE_ENC_01" + null padding */ get_seed(seed_buf, type); // This will write the seed into crypto register c0 crypt_store(0, seed_buf); // fuc5 csecret instruction // Load selected secret into crypto register c1 csecret(c1, 0x26); // fuc5 ckeyreg instruction // Bind c1 register as the key for enc/dec operations ckeyreg(c1); // fuc5 cenc instruction // Encrypt seed_buf (in c0) using keyreg value as key into c1 cenc(c1, c0); // fuc5 csigenc instruction // Encrypt c1 register with the auth signature stored in c6 csigenc(c1, c1); // Copy the result into c4 (will be used as key) cmov(c4, c1); // Do key expansion (for decryption) if (modeĀ != 0) ckexp(c4, c4); // fuc5 ckexp instruction return;
enc_buffer
This method takes buf (a 16 bytes buffer) and size as arguments and encrypts the supplied buffer.
// Set first 3 words to null *(u32 *)(buf + 0x00) = 0; *(u32 *)(buf + 0x04) = 0; *(u32 *)(buf + 0x08) = 0; // Swap halves (b16, b32 and b16 again) hswap(size); // Store the size as the last word *(u32 *)(buf + 0x0C) = size; // This will write buf into crypto register c3 crypt_store(0x03, buf); // fuc5 ckeyreg instruction // Bind c4 register (from keygen) as the key for enc/dec operations ckeyreg(c4); // fuc5 cenc instruction // Encrypt buf (in c3) using keyreg value as key into c5 cenc(c5, c3); // This will read into buf from crypto register c5 crypt_load(0x05, buf); return;
do_crypto
This is the method responsible for all crypto operations performed during Stage 1. It takes src_addr, src_size, iv_addr, dst_addr, mode and crypt_ver as arguments.
// Check for invalid source data size if (!src_size || (src_size & 0x0F)) exit(); // Check for invalid source data address if (src_addr & 0x0F) exit(); // Check for invalid destination data address if (dst_addr & 0x0F) exit(); // Use IV if available if (iv_addr) { // This will write the iv_addr into crypto register c5 crypt_store(0x05, iv_addr); } else { // Clear c5 register (use null IV) cxor(c5, c5); } // Use key in c4 ckeyreg(c4); // AES-128-ECB decrypt if (mode == 0x00) { // Create crypto script with 5 instructions cs0begin(0x05); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cdec(c2, c3); // Decrypt from c3 into c2 cxor(c5, c2); // XOR c2 with c5 and store in c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 cmov(c5, c3); // Move c3 into c5 } else if (mode == 0x01) // AES-128-ECB encrypt { // Create crypto script with 4 instructions cs0begin(0x04); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cxor(c3, c5); // XOR c5 with c3 and store in c3 cenc(c5, c3); // Encrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else if (mode == 0x02) // AES-CMAC { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cxor(c5, c3); // XOR c5 with c3 and store in c3 cenc(c5, c5); // Encrypt from c5 into c5 } else if (mode == 0x03) // AES-128-ECB decrypt (no IV) { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cdec(c5, c3); // Decrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else if (mode == 0x04) // AES-128-ECB encrypt (no IV) { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cenc(c5, c3); // Encrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else return; // Main loop while (src_size > 0) { u32 blk_count = (src_size >> 0x04); if (blk_count > 0x10) blk_count = 0x10; // Check size align if (blk_count & (blk_count - 0x01)) blk_count = 0x01; u32 blk_size = (blk_count << 0x04); u32 crypt_xfer_src = 0; u32 crypt_xfer_dst = 0; if (block_size == 0x20) { crypt_xfer_src = (0x00030000 | src_addr); crypt_xfer_dst = (0x00030000 | dst_addr); // Execute crypto script 2 times (1 for each block) cs0exec(0x02); } if (block_size == 0x40) { crypt_xfer_src = (0x00040000 | src_addr); crypt_xfer_dst = (0x00040000 | dst_addr); // Execute crypto script 4 times (1 for each block) cs0exec(0x04); } if (block_size == 0x80) { crypt_xfer_src = (0x00050000 | src_addr); crypt_xfer_dst = (0x00050000 | dst_addr); // Execute crypto script 8 times (1 for each block) cs0exec(0x08); } if (block_size == 0x100) { crypt_xfer_src = (0x00060000 | src_addr); crypt_xfer_dst = (0x00060000 | dst_addr); // Execute crypto script 16 times (1 for each block) cs0exec(0x10); } else { crypt_xfer_src = (0x00020000 | src_addr); crypt_xfer_dst = (0x00020000 | dst_addr); // Execute crypto script 1 time (1 for each block) cs0exec(0x01); // Ensure proper block size block_size = 0x10; } // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto input/output stream if (crypt_ver == 0x01) cxset(0xA1); // Flag 0xA0 is (0x80 | 0x20) else cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream // Transfer data into the crypto input/output stream xdst(crypt_xfer_src, crypt_xfer_src); // AES-CMAC only needs one more xfer instruction if (mode == 0x02) { // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto input/output stream if (crypt_ver == 0x01) cxset(0xA1); // Flag 0xA0 is (0x80 | 0x20) else cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream // Wait for all data loads/stores to finish xdwait(); } else // AES enc/dec needs 2 more xfer instructions { // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto input/output stream if (crypt_ver == 0x01) cxset(0xA2); // Flag 0xA0 is (0x80 | 0x20) else cxset(0x22); // Flag 0x20 is external mem <-> crypto input/output stream // Transfer data from the crypto input/output stream xdld(crypt_xfer_dst, crypt_xfer_dst); // Wait for all data loads/stores to finish xdwait(); // Increase the destination address by block size dst_addr += block_size; } // Increase the source address by block size src_addr += block_size; // Decrease the source size by block size src_size -= block_size; } // AES-CMAC result is in c5 if (mode == 0x02) { // This will read into dst_addr from crypto register c5 crypt_load(0x05, dst_addr); } return;
Stage 2
This stage is decrypted by Stage 1 using a key generated by encrypting a seed with an hardware secret (see keygen).
Key data
Small buffer stored after Stage 0's code and used across all stages.
Offset | Size | Description |
---|---|---|
0x00 | 0x10 | Empty |
0x10 | 0x10 | blob0 auth hash |
0x20 | 0x10 | blob1 auth hash |
0x30 | 0x10 | blob2 auth hash |
0x40 | 0x10 | blob2 AES IV |
0x50 | 0x10 | HOVI EKS seed |
0x60 | 0x10 | HOVI COMMON seed |
0x70 | 0x04 | blob0 size |
0x74 | 0x04 | blob1 size |
0x78 | 0x04 | blob2 size |
Notes
mwk shared additional info learned from RE of falcon processors over the years, which hasn't made it into envytools documentation yet:
cxset
cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions.
for example: 000000de: f4 3c 02 cxset 0x2
can be read as: dma_override(type=crypto_reg, count=2)
The argument to cxset specifies the type of behavior change in the top 3 bits, and the number of DMA-related instructions the effect lasts for in the lower 5 bits.
Override Types
Unlisted values are unknown, but probably do something.
Value | Effect |
---|---|
0b000 | falcon data mem <-> falcon $cX register |
0b001 | external mem <-> crypto input/output stream |
0b011 | falcon data mem <-> crypto input/output stream |
0b100 | unknown, but can be combined with other types |
DMA-Related Instructions
At least the following instructions may have changed behavior, and count against the cxset "count" argument: xdwait
, xdst
, xdld
.
For example, if override type=0b000, then the "length" argument to xdst
is instead treated as the index of the target $cX register.
Register ACLs
Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected).
Authenticated Mode Entry/Exit
Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check.
Exit from Authenticated Mode must poke a special register before leaving authenticated code pages and a failure to do this would result in the Falcon core halting. Every Falcon based unit (TSEC, NVDEC, VIC) must map this register in their engine-specific subset of registers. In TSEC's case, the register is TSEC_SCP_CTL_AUTH_MODE.
Unknown Instructions
00000000: f5 3c XY e0 cchmod $cY $cX
- likely forces a change of permissions.
00000000: f5 3c XY a8 c_unk $cY $cX
- unknown crypto operation.
00000000: f5 3c 0X 90 c_unk $cX
- unknown crypto operation.