TSEC
TSEC (Tegra Security Engine Controller) is a NVIDIA Falcon microprocessor with crypto extensions. Therefore, all information in this page related to Falcon is identical for TSEC and vice versa.
Driver
A host driver for communicating with the TSEC/Falcon is mapped to physical address 0x54500000 with a total size of 0x40000 bytes and exposes several registers.
Registers
Name | Address | Width |
---|---|---|
FALCON_IRQMSET | 0x54501010 | 0x04 |
FALCON_IRQDEST | 0x5450101C | 0x04 |
FALCON_SCRATCH0 | 0x54501040 | 0x04 |
FALCON_SCRATCH1 | 0x54501044 | 0x04 |
FALCON_ITFEN | 0x54501048 | 0x04 |
FALCON_CPUCTL | 0x54501100 | 0x04 |
FALCON_BOOTVEC | 0x54501104 | 0x04 |
FALCON_DMACTL | 0x5450110C | 0x04 |
FALCON_DMATRFBASE | 0x54501110 | 0x04 |
FALCON_DMATRFMOFFS | 0x54501114 | 0x04 |
FALCON_DMATRFCMD | 0x54501118 | 0x04 |
FALCON_DMATRFFBOFFS | 0x5450111C | 0x04 |
FALCON_IRQMSET
Used for configuring Falcon's IRQs.
FALCON_IRQDEST
Used for configuring Falcon's IRQs.
FALCON_SCRATCH0
MMIO register for reading/writing data to Falcon.
FALCON_SCRATCH1
MMIO register for reading/writing data to Falcon.
FALCON_ITFEN
Bits | Description |
---|---|
0 | FALCON_ITFEN_CTXEN |
1 | FALCON_ITFEN_MTHDEN |
Used for enabling/disabling Falcon interfaces.
FALCON_CPUCTL
Bits | Description |
---|---|
0 | FALCON_CPUCTL_STARTCPU |
Used for signaling Falcon's CPU.
FALCON_BOOTVEC
Takes the Falcon's boot vector address.
FALCON_DMACTL
Bits | Description |
---|---|
1 | FALCON_DMACTL_DMEM_SCRUBBING |
2 | FALCON_DMACTL_IMEM_SCRUBBING |
Used for configuring the Falcon's DMA engine.
FALCON_DMATRFBASE
Takes the host's base address for transferring data to/from the Falcon (DMA).
FALCON_DMATRFMOFFS
Takes the offset for the host's source memory being transferred.
FALCON_DMATRFCMD
Bits | Description |
---|---|
1 | FALCON_DMATRFCMD_IDLE (this is set if the engine is idle) |
4 | FALCON_DMATRFCMD_IMEM |
9-10 | FALCON_DMATRFCMD_SIZE_256B |
Used for configuring DMA transfers.
FALCON_DMATRFFBOFFS
Takes the offset for Falcon's target memory being transferred.
Boot Process
TSEC is configured and initialized by the first bootloader during key generation (sub_400114FC).
Initialization
During this stage several clocks are programmed.
// Program the HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X enable_host1x_clkrst(); // Program the TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC enable_tsec_clkrst(); // Program the SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE enable_sor_safe_clkrst(); // Program the SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 enable_sor0_clkrst(); // Program the SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 enable_sor1_clkrst(); // Program the KFUSE clock resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE enable_kfuse_clkrst();
Configuration
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
// Clear the Falcon DMA control register *(u32 *)FALCON_DMACTL = 0; // Enable Falcon IRQs *(u32 *)FALCON_IRQMSET = 0xFFF2; // Enable Falcon IRQs *(u32 *)FALCON_IRQDEST = 0xFFF0; // Enable Falcon interfaces *(u32 *)FALCON_ITFEN = 0x03; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle();
Firmware loading
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
// Set DMA transfer base address to 0x40011900 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x400119; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0xF00) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
Firmware booting
Falcon is booted up and the first bootloader waits for it to finish.
// Set host1x sync config *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle(); u32 boot_res = 0; u32 time = 0; while (!boot_res) { // Read boot result from scratch1 MMIO boot_res = *(u32 *)FALCON_SCRATCH1; // Read from RTC_MILLISECONDS time = rtc_read(); // Booting is taking too long if (time > 2000000) panic(); } // Invalid boot result was returned if (boot_res != 0xB0B0B0B0) panic();
Keygen
The Falcon device key is generated by reading SOR registers modified by Falcon.
// Clear host1x sync config *(u32 *)0x50003300 = 0; // Generate Falcon device key u32 falcon_device_key[4]; falcon_device_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB; falcon_device_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB; falcon_device_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB; falcon_device_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB; // Clear SOR registers *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0; if (out_size < 0x10) out_size = 0x10; // Copy back the Falcon key memcpy(out_buf, falcon_device_key, out_size);
Cleanup
Clocks and resets are disabled before returning.
// Deprogram KFUSE clock and resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE disable_kfuse_clkrst(); // Deprogram SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 disable_sor1_clkrst(); // Deprogram SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 disable_sor0_clkrst(); // Deprogram SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE disable_sor_safe_clkrst(); // Deprogram TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC disable_tsec_clkrst(); // Deprogram HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X disable_host1x_clkrst(); return;
TSEC Firmware
The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs: Stage0, Stage1, Stage2 and key data.
Firmware can be disassembled with envytools' envydis:
envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt
Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.
Stage 0
During this stage key data is loaded and Stage 1 is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader.
Initialization
Falcon sets up it's own stack pointer.
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Set the stack pointer *(u32 *)sp = data_seg_size;
Stage 1 loading
u32 boot_base_addr = 0; u32 key_data_buf[0x7C]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x7C; read_code(key_data_buf, key_data_addr, key_data_size); // Read the next code segment into boot base u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); u32 boot_res = 0; bool is_done = false; u32 time = 0; bool is_blob_dec = false; while (!is_done) { if (time > 4000000) { // Write boot failed (timeout) magic to FALCON_SCRATCH1 boot_res = 0xC0C0C0C0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01) u32 key_version = *(u32 *)FALCON_SCRATCH0; if (key_version == 0x64) { // Skip all next stages boot_res = 0xB0B0B0B0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } else { if (key_version > 0x03) boot_res = 0xD0D0D0D0; // Invalid key version else if (key_version == 0) boot_res = 0xB0B0B0B0; // No keys used else { u32 key_buf[0x7C]; // Copy key data memcpy(key_buf, key_data_buf, 0x7C); u32 xfer_size_flag = 0x00060000; u32 blob1_hash_addr = key_buf + 0x20; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size *(u32 *)cauth = ((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x02; // Transfer data from/to Falcon xdst(0, (blob1_hash_addr | xfer_size_flag)); // Wait for all data loads/stores to finish xdwait(); // Jump to Stage1 u32 stage1_res = exec_stage1(key_buf, key_version, is_blob_dec); is_blob_dec = true; // Set this to prevent decrypting again // Set boot finish magic on success if (stage1_res == 0) boot_res = 0xB0B0B0B0 } // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = boot_res; if (boot_res == 0xB0B0B0B0) is_done = true; } time++; } // Write Falcon device key to registers set_device_key(key_data_buf); return boot_res;
Stage 1
This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Stage 2.
Crypto setup
// Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; *(u8 *)flags_ie2 = 0; // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x80; // fuc5 crypt cauth instruction *(u32 *)cauth &= 0x7FFFF; // Set the target port for memory transfers // Target will now be 0 (crypto) xtargets(0); // Wait for all data loads/stores to finish xdwait(); // Wait for all code loads to finish xcwait(); // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x02; // Transfer data from/to Falcon // This should clear all previous hashes xdst(0, 0); // Wait for all data loads/stores to finish xdwait(); // Clear crypto registers *(u32 *)c0 ^= *(u32 *)c0; *(u32 *)c1 = *(u32 *)c0; *(u32 *)c2 = *(u32 *)c0; *(u32 *)c3 = *(u32 *)c0; *(u32 *)c4 = *(u32 *)c0; *(u32 *)c5 = *(u32 *)c0; *(u32 *)c7 = *(u32 *)c0; // Update engine specific IO (crypto?) *(u32 *)0x00020E00 &= 0xEFFFF; // Update engine specific IO (crypto?) *(u32 *)0x00010600 |= 0x01; u32 wait_10600 = 0; // Wait for some device while (wait_10600 == 0) wait_10600 = (*(u32 *)0x00010600 & 0x02); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Check stack bounds if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800)) return; // Decrypt and load Stage2 load_stage2(key_buf, key_version, is_blob_dec); // Clear crypto registers *(u32 *)c0 ^= *(u32 *)c0; *(u32 *)c1 ^= *(u32 *)c1; *(u32 *)c2 ^= *(u32 *)c2; *(u32 *)c3 ^= *(u32 *)c3; *(u32 *)c4 ^= *(u32 *)c4; *(u32 *)c5 ^= *(u32 *)c5; *(u32 *)c6 ^= *(u32 *)c6; *(u32 *)c7 ^= *(u32 *)c7; // Signal unknown engine *(u32 *)0x00010300 = 0; return;
Stage 2 loading
u32 res = 0; u32 boot_base_addr = 0; u32 blob0_addr = 0; u32 blob0_size = *(u32 *)(key_buf + 0x70); // Load blob0 code again read_code(boot_base_addr, blob0_addr, blob0_size); // Generate "CODE_SIG_01" key into c4 crypto register keygen(0, 0); // Encrypt buffer with c4 u32 sig_key[0x10]; enc_buf(sig_key, blob0_size); u32 src_addr = boot_base_addr; u32 src_size = blob0_size; u32 iv_addr = sig_key; u32 dst_addr = sig_key; u32 mode = 0x02; // AES-CMAC u32 version = 0; // Do AES-CMAC over blob0 code do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Compare the hashes if (memcmp(sig_key, key_buf + 0x10, 0x10)) { res = 0xDEADBEEF; return res; } u32 blob1_size = *(u32 *)(key_buf + 0x74); // Decrypt Stage2 blob if needed if (!is_blob_dec) { // Read Stage2's size from key buffer u32 blob2_size = *(u32 *)(key_buf + 0x78); // Check stack bounds if (*(u32 *)sp > blob2_size) { u32 boot_base_addr = 0; u32 blob2_virt_addr = blob0_size + blob1_size; u32 blob2_addr = blob2_virt_addr + 0x100; // Read Stage2's encrypted blob read_code(boot_base_addr, blob2_addr, blob2_size); // Generate "CODE_ENC_01" key into c4 crypt register keygen(0x01, 0x01); u32 src_addr = boot_base_addr; u32 src_size = blob2_size; u32 iv_addr = key_buf + 0x40; u32 dst_addr = boot_base_addr; u32 mode = 0; // AES-128-ECB u32 version = 0; // Decrypt Stage2 do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Upload the next code segment into Falcon's CODE region bool use_secret = true; upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret); // Clear out the decrypted blob memset(boot_base_addr, 0, blob2_size); } } // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x02; u32 xfer_size_flag = 0x00060000; u32 blob2_hash_addr = key_buf + 0x30; // Transfer data from/to Falcon xdst(0, (blob2_hash_addr | xfer_size_flag)); // Wait for all data loads/stores to finish xdwait(); // Save previous cauth value u32 cauth_old = *(u32 *)cauth; // fuc5 crypt cauth instruction // Set auth_addr to blob2_virt_addr and auth_size to blob2_size *(u32 *)cauth = ((blob2_virt_addr >> 0x08) | (blob2_size << 0x10)); u32 hovi_key_addr = 0; // Select next stage key if (key_version == 0x01) // Use HOVI_EKS_01 hovi_key_addr = key_buf + 0x50; else if (key_version == 0x02) // Use HOVI_COMMON_01 hovi_key_addr = key_buf + 0x60; else if (key_version == 0x03) // Use device key hovi_key_addr = key_buf + 0x00; else res = 0xD0D0D0D0 // Jump to Stage2 if (hovi_key_addr) res = exec_stage2(hovi_key_addr, key_version); // Clear out key data memset(key_buf, 0, 0x7C); // Restore previous cauth value *(u32 *)cauth = cauth_old; return res;
Stage 2
This stage is decrypted by Stage 1 using an hardware secret (HOVI == Horizon VI?).
Key data
Small buffer stored after Stage 0's code and used across all stages.
Offset | Size | Description |
---|---|---|
0x00 | 0x10 | Device key |
0x10 | 0x10 | blob0 hash |
0x20 | 0x10 | blob1 hash |
0x30 | 0x10 | blob2 hash |
0x40 | 0x10 | blob2 IV |
0x50 | 0x10 | HOVI_EKS_01 |
0x60 | 0x10 | HOVI_COMMON_01 |
0x70 | 0x04 | blob0 size |
0x74 | 0x04 | blob1 size |
0x78 | 0x04 | blob2 size |
Notes
mwk shared additional info learned from RE of falcon processors over the years, which hasn't made it into envytools documentation yet:
cxset
cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions.
for example: 000000de: f4 3c 02 cxset 0x2
can be read as: dma_override(type=crypto_reg, count=2)
The argument to cxset specifies the type of behavior change in the top 3 bits, and the number of DMA-related instructions the effect lasts for in the lower 5 bits.
Override Types
Unlisted values are unknown, but probably do something.
Value | Effect |
---|---|
0b000 | falcon data mem <-> falcon $cX register |
0b001 | external mem <-> crypto input/output stream |
DMA-Related Instructions
At least the following instructions may have changed behavior, and count against the cxset "count" argument: xdwait
, xdst
, xdld
.
For example, if override type=0b000, then the "length" argument to xdst
is instead treated as the index of the target $cX register.
Register ACLs
Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected).
Authenticated Mode Entry/Exit
Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check.
Exit from Authenticated Mode must poke a special register (this seems to be I[0x10300] = 0) before leaving authenticated code pages. Failure to do this would result in the Falcon core halting.