TSEC Firmware: Difference between revisions

No edit summary
No edit summary
Line 1,387: Line 1,387:
     set_excp_vec(entry_addr);
     set_excp_vec(entry_addr);


     // Fill the top 0x500 bytes in DMEM with a pointer to trap function (just exits)
     // Fill the top 0x500 bytes in DMEM with a pointer to trap function (just exits 3 times)
     for (int i = 0; i < 0x500; i += 0x04) {
     for (int i = 0; i < 0x500; i += 0x04) {
         *(u32 *)i = (u32)trap_func();
         *(u32 *)i = (u32)trap_func();
Line 1,421: Line 1,421:
</pre>
</pre>


[7.0.0+]
[7.0.0+] Many changes were introduced to mitigate and prevent attacks.
<pre>
    // Recover the transfer base address from the stack
    u32 xfer_ext_base_addr = *(u32 *)scratch_data_addr;
 
    // Return the TLB entry that covers the virtual address
    u32 tlb_entry = vtlb(xfer_ext_base_addr);
   
    // Clear Falcon CPU control
    *(u32 *)FALCON_CPUCTL = 0;
   
    // Halt if the external page is marked as secret
    if ((tlb_entry & 0x4000000) != 0)
        exit();
   
    // Read data segment size from IO space
    u32 data_seg_size = *(u32 *)FALCON_HWCFG;
    data_seg_size >>= 0x01;
    data_seg_size &= 0xFF00;
    // Set the stack pointer
    $sp = data_seg_size;
   
    // Fill all DMEM with a pointer to a trap function (just exits 3 times)
    for (int i = 0; i < data_seg_size; i += 0x04) {
        *(u32 *)i = (u32)trap_func();
    }
 
    // Initialize the TRNG and generate random data in DMEM
    init_rnd();
   
    // Issue a randomized delay and return a random value
    u32 rnd_val = rnd_delay(0xFF);
 
    // Enable and test SMMU bypassing in the TFBIF
    tfbif_smmu_cfg(0x01);
 
    // Issue a randomized delay and return a random value
    rnd_val = rnd_delay(0xFF);
 
    // Test SMMU bypassing in the TFBIF
    tfbif_smmu_cfg(0x00);
 
    // Issue a randomized delay and return a random value
    rnd_val = rnd_delay(0xFF);
 
    // Test SMMU bypassing in the TFBIF
    tfbif_smmu_cfg(0x00);
 
    // Fill SE keyslots 12 and 13 with random data
    se_set_keyslot_rnd();
 
    // Test randomized offsets for read/write integrity in MC, FUSE, IRAM and TZRAM
    u32 test_res = test_mc_fuse_iram_tzram();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Try to detect virtualization by enabling and disabling random CAR devices
    test_res = test_car();
   
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Test memory transfer integrity
    test_res = test_mem_xfer();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Set FLOW_MODE_WAITEVENT in FLOW_CTLR_HALT_COP_EVENTS_0
    halt_bpmp();
 
    // Initialize the CCPLEX
    ccplex_init();
 
    // Check if SE is ready
    u32 se_status = check_se_status();
 
    if (se_status != 0)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Load the TSEC key from SOR1 registers into DMEM
    sor1_get_key();
 
    // Initialize CAR registers
    car_init();
 
    // Check certain CAR, PMC and FUSE registers
    test_car_pmc_fuse();
 
    // Try to detect virtualization by enabling and disabling random CAR devices
    test_res = test_car();
   
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Ensure FUSE_SKU_INFO is 0x83
    test_fuse_sku_info();
 
    // Try to detect virtualization using MC_SMMU_AVPC_ASID and FUSE_ECO_RESERVE_0
    test_smmu_fuse();
 
    // Test MC_IRAM_BOM and MC_IRAM_TOM
    test_res = test_mc_iram_aperture();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Check certain CAR, PMC and FUSE registers
    test_car_pmc_fuse();
 
    // Test memory transfer integrity
    test_res = test_mem_xfer();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Try to detect virtualization using MC_SMMU_AVPC_ASID and FUSE_ECO_RESERVE_0
    test_smmu_fuse();
 
    // Test MC_IRAM_BOM and MC_IRAM_TOM
    test_res = test_mc_iram_aperture();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Test SMMU bypassing in the TFBIF
    tfbif_smmu_cfg(0x00);
 
    // Decrypt Package1
    decrypt_pk11();
 
    // Write TSEC root key to SE keyslot 0x0D
    se_set_keyslot_13();
 
    // Write TSEC key to SE keyslot 0x0C
    se_set_keyslot_12();
 
    // Clear the cauth signature
    csigclr();
 
    // Check certain CAR, PMC and FUSE registers
    test_car_pmc_fuse();
 
    // Test memory transfer integrity
    test_res = test_mem_xfer();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
   
    // Try to detect virtualization using MC_SMMU_AVPC_ASID and FUSE_ECO_RESERVE_0
    test_smmu_fuse();
 
    // Test randomized offsets for read/write integrity in MC, FUSE, IRAM and TZRAM
    test_res = test_mc_fuse_iram_tzram();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Test MC_IRAM_BOM and MC_IRAM_TOM
    test_res = test_mc_iram_aperture();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Test SMMU bypassing in the TFBIF
    tfbif_smmu_cfg(0x00);
 
    // Parse Package1 header and return entry address
    u32 entry_addr = parse_pk11();
 
    // Set the exception vectors
    set_excp_vec(entry_addr);
 
    // Fill the top 0x500 bytes in DMEM with a pointer to trap function (just exits)
    for (int i = 0; i < 0x500; i += 0x04) {
        *(u32 *)i = (u32)trap_func();
    }
 
    // Clear all crypto registers
    cxor($c0, $c0);
    cxor($c1, $c1);
    cxor($c2, $c2);
    cxor($c3, $c3);
    cxor($c4, $c4);
    cxor($c5, $c5);
    cxor($c6, $c6);
    cxor($c7, $c7);
   
    // Take SCP out of lockdown
    unlock_scp();
 
    // Test memory transfer integrity
    test_res = test_mem_xfer();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Try to detect virtualization using MC_SMMU_AVPC_ASID and FUSE_ECO_RESERVE_0
    test_smmu_fuse();
 
    // Test MC_IRAM_BOM and MC_IRAM_TOM
    test_res = test_mc_iram_aperture();
 
    if (test_res != 0xAAAAAAAA)
    {
        // Fill SE keyslots 12 and 13 with random data
        se_set_keyslot_rnd();
 
        // Clear the entire DMEM region and every crypto register
        clear_dmem_and_crypto();
 
        // Halt 5 times for no good reason
        exit();
        exit();
        exit();
        exit();
        exit();
    }
 
    // Test SMMU bypassing in the TFBIF
    tfbif_smmu_cfg(0x00);
 
    // Clear FLOW_CTLR_HALT_COP_EVENTS_0
    resume_bpmp();
 
    // Clear the entire DMEM region and every crypto register
    clear_dmem_and_crypto();
       
    // Halt 5 times for no good reason
    exit();
    exit();
    exit();
    exit();
    exit();
 
    return;
</pre>


== Key data ==
== Key data ==