Difference between revisions of "TSEC"
m |
(6.2.0 changes) |
||
Line 392: | Line 392: | ||
| TSEC_TFBIF_UNK2 | | TSEC_TFBIF_UNK2 | ||
| 0x54501640 | | 0x54501640 | ||
+ | | 0x04 | ||
+ | |- | ||
+ | | TSEC_TFBIF_UNK3 | ||
+ | | 0x54501644 | ||
+ | | 0x04 | ||
+ | |- | ||
+ | | TSEC_TFBIF_UNK4 | ||
+ | | 0x54501648 | ||
| 0x04 | | 0x04 | ||
|- | |- | ||
Line 429: | Line 437: | ||
| 0x54501838 | | 0x54501838 | ||
| 0x04 | | 0x04 | ||
− | |||
|} | |} | ||
Line 454: | Line 461: | ||
| 1 | | 1 | ||
| FALCON_ITFEN_MTHDEN | | FALCON_ITFEN_MTHDEN | ||
− | |||
|} | |} | ||
Line 466: | Line 472: | ||
| 0 | | 0 | ||
| FALCON_IDLESTATE_FALCON_BUSY | | FALCON_IDLESTATE_FALCON_BUSY | ||
− | |||
|} | |} | ||
Line 493: | Line 498: | ||
| 5 | | 5 | ||
| FALCON_CPUCTL_STOPPED | | FALCON_CPUCTL_STOPPED | ||
− | |||
|} | |} | ||
Line 520: | Line 524: | ||
| 7 | | 7 | ||
| FALCON_DMACTL_SECURE_STAT | | FALCON_DMACTL_SECURE_STAT | ||
− | |||
|} | |} | ||
Line 540: | Line 543: | ||
|- | |- | ||
| 1 | | 1 | ||
− | | FALCON_DMATRFCMD_IDLE | + | | FALCON_DMATRFCMD_IDLE |
|- | |- | ||
| 2-3 | | 2-3 | ||
Line 556: | Line 559: | ||
| 12-14 | | 12-14 | ||
| FALCON_DMATRFCMD_CTXDMA | | FALCON_DMATRFCMD_CTXDMA | ||
− | |||
|} | |} | ||
Line 571: | Line 573: | ||
| 20 | | 20 | ||
| TSEC_SCP_CTL_STAT_DEBUG_MODE | | TSEC_SCP_CTL_STAT_DEBUG_MODE | ||
− | |||
|} | |} | ||
Line 584: | Line 585: | ||
| 1 | | 1 | ||
| TSEC_SCP_CTL_PKEY_LOADED | | TSEC_SCP_CTL_PKEY_LOADED | ||
− | |||
|} | |} | ||
Line 609: | Line 609: | ||
| 31 | | 31 | ||
| TSEC_DMA_CMD_INIT | | TSEC_DMA_CMD_INIT | ||
− | |||
|} | |} | ||
Line 649: | Line 648: | ||
| 27 | | 27 | ||
| TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C | | TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C | ||
− | |||
|} | |} | ||
= Boot Process = | = Boot Process = | ||
− | TSEC is configured and initialized by the first bootloader during key generation | + | TSEC is configured and initialized by the first bootloader during key generation. |
+ | |||
+ | [6.2.0+] TSEC is now configured at the end of the first bootloader's main function. | ||
== Initialization == | == Initialization == | ||
Line 709: | Line 709: | ||
// Load code into Falcon (0x100 bytes at a time) | // Load code into Falcon (0x100 bytes at a time) | ||
while (src_offset < 0xF00) | while (src_offset < 0xF00) | ||
+ | { | ||
+ | flcn_load_firm(trf_mode, src_offset, dst_offset); | ||
+ | src_offset += 0x100; | ||
+ | dst_offset += 0x100; | ||
+ | } | ||
+ | |||
+ | [6.2.0+] The transfer base address and size of the Falcon firmware code changed. | ||
+ | // Set DMA transfer base address to 0x40010E00 >> 0x08 | ||
+ | *(u32 *)FALCON_DMATRFBASE = 0x40010E; | ||
+ | |||
+ | u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM | ||
+ | u32 dst_offset = 0; | ||
+ | u32 src_offset = 0; | ||
+ | |||
+ | // Load code into Falcon (0x100 bytes at a time) | ||
+ | while (src_offset < 0x2900) | ||
{ | { | ||
flcn_load_firm(trf_mode, src_offset, dst_offset); | flcn_load_firm(trf_mode, src_offset, dst_offset); | ||
Line 717: | Line 733: | ||
== Firmware booting == | == Firmware booting == | ||
Falcon is booted up and the first bootloader waits for it to finish. | Falcon is booted up and the first bootloader waits for it to finish. | ||
− | // Set | + | // Set magic value in host1x scratch space |
− | |||
*(u32 *)0x50003300 = 0x34C2E1DA; | *(u32 *)0x50003300 = 0x34C2E1DA; | ||
Line 757: | Line 772: | ||
if (boot_res != 0xB0B0B0B0) | if (boot_res != 0xB0B0B0B0) | ||
panic(); | panic(); | ||
+ | |||
+ | [6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop. | ||
+ | // Set magic value in host1x scratch space | ||
+ | *(u32 *)0x50003300 = 0x34C2E1DA; | ||
+ | |||
+ | // Clear Falcon scratch1 MMIO | ||
+ | *(u32 *)FALCON_SCRATCH1 = 0; | ||
+ | |||
+ | // Set Falcon boot key version in scratch0 MMIO | ||
+ | *(u32 *)FALCON_SCRATCH0 = 0x01; | ||
+ | |||
+ | // Set Falcon's boot vector address | ||
+ | *(u32 *)FALCON_BOOTVEC = 0; | ||
+ | |||
+ | // Signal Falcon's CPU | ||
+ | *(u32 *)FALCON_CPUCTL = 0x02; | ||
+ | |||
+ | // Infinite loop | ||
+ | deadlock(); | ||
== Device key generation == | == Device key generation == | ||
The TSEC device key is generated by reading SOR1 registers modified by the Falcon CPU. | The TSEC device key is generated by reading SOR1 registers modified by the Falcon CPU. | ||
− | // Clear | + | // Clear magic value in host1x scratch space |
− | |||
*(u32 *)0x50003300 = 0; | *(u32 *)0x50003300 = 0; | ||
Line 782: | Line 815: | ||
// Copy back the TSEC device key | // Copy back the TSEC device key | ||
memcpy(out_buf, tsec_device_key, out_size); | memcpy(out_buf, tsec_device_key, out_size); | ||
+ | |||
+ | [6.2.0+] This is now done inside an encrypted TSEC payload. | ||
== Cleanup == | == Cleanup == | ||
Line 813: | Line 848: | ||
= TSEC Firmware = | = TSEC Firmware = | ||
The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. | The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. | ||
− | Stored inside the first bootloader, this firmware binary is split into 4 blobs: | + | Stored inside the first bootloader, this firmware binary is split into 4 blobs (names are unofficial): [[#Boot|Boot]] (unencrypted and unauthenticated code), [[#KeygenLdr|KeygenLdr]] (unencrypted and authenticated code), [[#Keygen|Keygen]] (encrypted and authenticated code) and [[#Key data|key data]]. |
+ | |||
+ | [6.2.0+] There are now 6 blobs (names are unofficial): [[#Boot|Boot]] (unencrypted and unauthenticated code), [[#Loader|Loader]] (unencrypted and unauthenticated code), [[#KeygenLdr|KeygenLdr]] (unencrypted and authenticated code), [[#Keygen|Keygen]] (encrypted and authenticated code), [[#Payload|Payload]] (part unencrypted and unauthenticated code, part encrypted and authenticated code) and [[#Key data|key data]]. | ||
Firmware can be disassembled with [http://envytools.readthedocs.io/en/latest/ envytools'] [https://github.com/envytools/envytools/tree/master/envydis envydis]: | Firmware can be disassembled with [http://envytools.readthedocs.io/en/latest/ envytools'] [https://github.com/envytools/envytools/tree/master/envydis envydis]: | ||
Line 821: | Line 858: | ||
Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together. | Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together. | ||
− | == | + | == Boot == |
− | During this stage key data is loaded and | + | During this stage, [[#Key data|key data]] is loaded and [[#KeygenLdr|KeygenLdr]] is authenticated, loaded and executed. |
Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader. | Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader. | ||
+ | |||
+ | [6.2.0+] During this stage, [[#Key data|key data]] is loaded and execution jumps to [[#Loader|Loader]]. | ||
=== Initialization === | === Initialization === | ||
Line 836: | Line 875: | ||
*(u32 *)sp = data_seg_size; | *(u32 *)sp = data_seg_size; | ||
− | === | + | === Main === |
+ | Falcon reads the [[#Key data|key data]], authenticates, loads and executes [[#KeygenLdr|KeygenLdr]] and finally sets the device key. | ||
u32 boot_base_addr = 0; | u32 boot_base_addr = 0; | ||
− | + | u8 key_data_buf[0x7C]; | |
// Read the key data from memory | // Read the key data from memory | ||
Line 908: | Line 948: | ||
// Transfer data to crypto register c6 | // Transfer data to crypto register c6 | ||
− | + | xdst(0, (blob1_hash_addr | crypt_reg_flag)); | |
− | + | // Wait for all data loads/stores to finish | |
− | + | xdwait(); | |
− | // Jump to | + | // Jump to KeygenLdr |
− | u32 | + | u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec); |
is_blob_dec = true; // Set this to prevent decrypting again | is_blob_dec = true; // Set this to prevent decrypting again | ||
// Set boot finish magic on success | // Set boot finish magic on success | ||
− | if ( | + | if (keygenldr_res == 0) |
boot_res = 0xB0B0B0B0 | boot_res = 0xB0B0B0B0 | ||
} | } | ||
Line 936: | Line 976: | ||
return boot_res; | return boot_res; | ||
+ | |||
+ | [6.2.0+] Falcon reads the [[#Key data|key data]] and jumps to [[#Loader|Loader]]. | ||
+ | u8 key_data_buf[0x84]; | ||
+ | |||
+ | // Read the key data from memory | ||
+ | u32 key_data_addr = 0x300; | ||
+ | u32 key_data_size = 0x84; | ||
+ | read_code(key_data_buf, key_data_addr, key_data_size); | ||
+ | |||
+ | // Calculate the next blob's address | ||
+ | u32 blob4_size = *(u32 *)(key_data_buf + 0x80); | ||
+ | u32 blob0_size = *(u32 *)(key_data_buf + 0x70); | ||
+ | u32 blob1_size = *(u32 *)(key_data_buf + 0x74); | ||
+ | u32 blob2_size = *(u32 *)(key_data_buf + 0x78); | ||
+ | u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size); | ||
+ | |||
+ | // Jump to next blob | ||
+ | (void *)blob3_addr(); | ||
+ | |||
+ | return 0; | ||
==== set_device_key ==== | ==== set_device_key ==== | ||
Line 1,014: | Line 1,074: | ||
return 0; | return 0; | ||
− | == | + | == KeygenLdr == |
− | This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing | + | This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing [[#Keygen|Keygen]]. |
− | === | + | === Main === |
// Clear interrupt flags | // Clear interrupt flags | ||
*(u8 *)flags_ie0 = 0; | *(u8 *)flags_ie0 = 0; | ||
Line 1,085: | Line 1,145: | ||
exit(); | exit(); | ||
− | // Decrypt and load | + | // Decrypt and load Keygen stage |
− | + | load_keygen(key_buf, key_version, is_blob_dec); | |
// Partially unknown fuc5 instruction | // Partially unknown fuc5 instruction | ||
Line 1,108: | Line 1,168: | ||
return; | return; | ||
− | === | + | ==== load_keygen ==== |
u32 res = 0; | u32 res = 0; | ||
Line 1,119: | Line 1,179: | ||
// Generate "CODE_SIG_01" key into c4 crypto register | // Generate "CODE_SIG_01" key into c4 crypto register | ||
− | + | gen_usr_key(0, 0); | |
// Encrypt buffer with c4 | // Encrypt buffer with c4 | ||
− | + | u8 sig_key[0x10]; | |
enc_buf(sig_key, blob0_size); | enc_buf(sig_key, blob0_size); | ||
Line 1,144: | Line 1,204: | ||
u32 blob1_size = *(u32 *)(key_buf + 0x74); | u32 blob1_size = *(u32 *)(key_buf + 0x74); | ||
− | // Decrypt | + | // Decrypt Keygen blob if needed |
if (!is_blob_dec) | if (!is_blob_dec) | ||
{ | { | ||
Line 1,157: | Line 1,217: | ||
u32 blob2_addr = blob2_virt_addr + 0x100; | u32 blob2_addr = blob2_virt_addr + 0x100; | ||
− | // Read | + | // Read Keygen encrypted blob |
read_code(boot_base_addr, blob2_addr, blob2_size); | read_code(boot_base_addr, blob2_addr, blob2_size); | ||
// Generate "CODE_ENC_01" key into c4 crypt register | // Generate "CODE_ENC_01" key into c4 crypt register | ||
− | + | gen_usr_key(0x01, 0x01); | |
u32 src_addr = boot_base_addr; | u32 src_addr = boot_base_addr; | ||
Line 1,170: | Line 1,230: | ||
u32 version = 0; | u32 version = 0; | ||
− | // Decrypt | + | // Decrypt Keygen blob |
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); | do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); | ||
Line 1,215: | Line 1,275: | ||
res = 0xD0D0D0D0 | res = 0xD0D0D0D0 | ||
− | // Jump to | + | // Jump to Keygen |
if (hovi_key_addr) | if (hovi_key_addr) | ||
− | res = | + | res = exec_keygen(hovi_key_addr, key_version); |
// Clear out key data | // Clear out key data | ||
Line 1,228: | Line 1,288: | ||
return res; | return res; | ||
− | ==== | + | ===== gen_usr_key ===== |
This method takes '''type''' and '''mode''' as arguments and generates a key. | This method takes '''type''' and '''mode''' as arguments and generates a key. | ||
− | + | u8 seed_buf[0x10]; | |
// Read a 16 bytes seed based on supplied type | // Read a 16 bytes seed based on supplied type | ||
Line 1,267: | Line 1,327: | ||
return; | return; | ||
− | ==== enc_buffer ==== | + | ===== enc_buffer ===== |
This method takes '''buf''' (a 16 bytes buffer) and '''size''' as arguments and encrypts the supplied buffer. | This method takes '''buf''' (a 16 bytes buffer) and '''size''' as arguments and encrypts the supplied buffer. | ||
// Set first 3 words to null | // Set first 3 words to null | ||
Line 1,296: | Line 1,356: | ||
return; | return; | ||
− | ==== do_crypto ==== | + | ===== do_crypto ===== |
− | This is the method responsible for all crypto operations performed during | + | This is the method responsible for all crypto operations performed during [[#KeygenLdr|KeygenLdr]]. It takes '''src_addr''', '''src_size''', '''iv_addr''', '''dst_addr''', '''mode''' and '''crypt_ver''' as arguments. |
// Check for invalid source data size | // Check for invalid source data size | ||
if (!src_size || (src_size & 0x0F)) | if (!src_size || (src_size & 0x0F)) | ||
Line 1,499: | Line 1,559: | ||
return; | return; | ||
− | == | + | == Keygen == |
− | This stage is decrypted by | + | This stage is decrypted by [[#KeygenLdr|KeygenLdr]] using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC device key. |
+ | |||
+ | == Loader == | ||
+ | This stage starts by authenticating and executing [[#KeygenLdr|KeygenLdr]] which in turn authenticates, decrypts and executes [[#Keygen|Keygen]] (both blobs remain unchanged from previous firmware versions). | ||
+ | After the TSEC device key has been generated, execution returns to this stage which then parses and executes [[#Payload|Payload]]. | ||
+ | |||
+ | === Main === | ||
+ | u8 key_data_buf[0x84]; | ||
+ | u8 tmp_key_data_buf[0x84]; | ||
+ | |||
+ | // Read the key data from memory | ||
+ | u32 key_data_addr = 0x300; | ||
+ | u32 key_data_size = 0x84; | ||
+ | read_code(key_data_buf, key_data_addr, key_data_size); | ||
+ | |||
+ | // Read the KeygenLdr blob from memory | ||
+ | u32 boot_base_addr = 0; | ||
+ | u32 blob1_addr = 0x400; | ||
+ | u32 blob1_size = *(u32 *)(key_data_buf + 0x74); | ||
+ | read_code(boot_base_addr, blob1_addr, blob1_size); | ||
+ | |||
+ | // Upload the next code segment into Falcon's CODE region | ||
+ | u32 blob1_virt_addr = 0x300; | ||
+ | bool use_secret = true; | ||
+ | upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); | ||
+ | |||
+ | // Backup the key data | ||
+ | memcpy(tmp_key_data_buf, key_data_buf, 0x84); | ||
+ | |||
+ | // Save previous cauth value | ||
+ | u32 c_old = cauth_old; | ||
+ | |||
+ | // fuc5 crypt cauth instruction | ||
+ | // Set auth_addr to 0x300 and auth_size to blob1_size | ||
+ | cauth((blob1_size << 0x10) | (0x300 >> 0x08)); | ||
+ | |||
+ | // fuc5 crypt cxset instruction | ||
+ | // The next 2 xfer instructions will be overridden | ||
+ | // and target changes from DMA to crypto | ||
+ | cxset(0x02); | ||
+ | |||
+ | u32 crypt_reg_flag = 0x00060000; | ||
+ | u32 blob1_hash_addr = tmp_key_data_buf + 0x20; | ||
+ | |||
+ | // Transfer data to crypto register c6 | ||
+ | xdst(0, (blob1_hash_addr | crypt_reg_flag)); | ||
+ | |||
+ | // Wait for all data loads/stores to finish | ||
+ | xdwait(); | ||
+ | |||
+ | u32 key_version = 0x01; | ||
+ | bool is_blob_dec = false; | ||
+ | |||
+ | // Jump to KeygenLdr | ||
+ | u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec); | ||
+ | |||
+ | // Set boot finish magic on success | ||
+ | if (keygenldr_res == 0) | ||
+ | keygenldr_res = 0xB0B0B0B0 | ||
+ | |||
+ | // Write result to FALCON_SCRATCH1 | ||
+ | *(u32 *)FALCON_SCRATCH1 = keygenldr_res; | ||
+ | |||
+ | if (keygenldr_res != 0xB0B0B0B0) | ||
+ | return keygenldr_res; | ||
+ | |||
+ | // fuc5 crypt cauth instruction | ||
+ | // Restore previous cauth value | ||
+ | cauth(c_old); | ||
+ | |||
+ | u8 flcn_hdr_buf[0x18]; | ||
+ | u8 flcn_os_hdr_buf[0x10]; | ||
+ | |||
+ | blob1_size = *(u32 *)(key_data_buf + 0x74); | ||
+ | u32 blob2_size = *(u32 *)(key_data_buf + 0x78); | ||
+ | u32 blob0_size = *(u32 *)(key_data_buf + 0x70); | ||
+ | |||
+ | // Read the Payload blob's Falcon header from memory | ||
+ | u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size); | ||
+ | read_code(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18); | ||
+ | |||
+ | blob1_size = *(u32 *)(key_data_buf + 0x74); | ||
+ | blob2_size = *(u32 *)(key_data_buf + 0x78); | ||
+ | blob0_size = *(u32 *)(key_data_buf + 0x70); | ||
+ | u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C); | ||
+ | |||
+ | // Read the Payload blob's Falcon OS header from memory | ||
+ | u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size); | ||
+ | read_code(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10); | ||
+ | |||
+ | blob1_size = *(u32 *)(key_data_buf + 0x74); | ||
+ | blob2_size = *(u32 *)(key_data_buf + 0x78); | ||
+ | blob0_size = *(u32 *)(key_data_buf + 0x70); | ||
+ | u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10); | ||
+ | u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); | ||
+ | |||
+ | // Read the Payload blob's Falcon OS image from memory | ||
+ | u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size); | ||
+ | read_code(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size); | ||
+ | |||
+ | // Upload the Payload's Falcon OS image boot stub code segment into Falcon's CODE region | ||
+ | u32 blob4_flcn_os_boot_virt_addr = 0; | ||
+ | u32 blob4_flcn_os_boot_size = 0x100; | ||
+ | use_secret = false; | ||
+ | upload_code(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret); | ||
+ | |||
+ | flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); | ||
+ | |||
+ | // Upload the Payload blob's Falcon OS encrypted image code segment into Falcon's CODE region | ||
+ | u32 blob4_flcn_os_img_virt_addr = 0x100; | ||
+ | u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100); | ||
+ | use_secret = true; | ||
+ | upload_code(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret); | ||
+ | |||
+ | // Wait for all code loads to finish | ||
+ | xcwait(); | ||
+ | |||
+ | blob1_size = *(u32 *)(key_data_buf + 0x74); | ||
+ | blob2_size = *(u32 *)(key_data_buf + 0x78); | ||
+ | blob0_size = *(u32 *)(key_data_buf + 0x70); | ||
+ | flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10); | ||
+ | u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08); | ||
+ | |||
+ | // Read the Payload blob's falcon OS image's hash from memory | ||
+ | u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size); | ||
+ | read_code(0, blob4_flcn_os_img_hash_addr, 0x10); | ||
+ | |||
+ | // Read data segment size from IO space | ||
+ | u32 data_seg_size = *(u32 *)UC_CAPS; | ||
+ | data_seg_size >>= 0x03; | ||
+ | data_seg_size &= 0x3FC0; | ||
+ | |||
+ | u32 data_addr = 0x10; | ||
+ | |||
+ | // Clear all data except the first 0x10 bytes (Payload blob's Falcon OS image's hash) | ||
+ | for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++) | ||
+ | { | ||
+ | *(u32 *)(data_addr) = 0; | ||
+ | data_addr += 0x04; | ||
+ | } | ||
+ | |||
+ | // Clear all crypto registers | ||
+ | cxor(c0, c0); | ||
+ | cxor(c1, c1); | ||
+ | cxor(c2, c2); | ||
+ | cxor(c3, c3); | ||
+ | cxor(c4, c4); | ||
+ | cxor(c5, c5); | ||
+ | cxor(c6, c6); | ||
+ | cxor(c7, c7); | ||
+ | |||
+ | // Partially unknown fuc5 instruction | ||
+ | // Likely forces a change of permissions | ||
+ | cchmod(c0, c0); | ||
+ | |||
+ | // Jump to Payload | ||
+ | exec_payload(); | ||
+ | |||
+ | return 0xB0B0B0B0; | ||
+ | |||
+ | == Payload == | ||
+ | This stage prepares the stack then authenticates, decrypts and executes the Payload blob's Falcon OS image. | ||
+ | |||
+ | === Main === | ||
+ | // Read data segment size from IO space | ||
+ | u32 data_seg_size = *(u32 *)UC_CAPS; | ||
+ | data_seg_size >>= 0x01; | ||
+ | data_seg_size &= 0xFF00; | ||
+ | |||
+ | // Set the stack pointer | ||
+ | *(u32 *)sp = data_seg_size; | ||
+ | |||
+ | // Jump to the Payload blob's Falcon OS image boot stub | ||
+ | exec_flcn_os_boot(); | ||
+ | |||
+ | // Halt execution | ||
+ | exit(); | ||
+ | |||
+ | return; | ||
+ | |||
+ | ==== exec_flcn_os_boot ==== | ||
+ | // Read the transfer base address from IO space | ||
+ | u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE; | ||
+ | |||
+ | // Copy transfer base address to data memory | ||
+ | u32 scratch_data_addr = 0x300; | ||
+ | *(u32 *)scratch_data_addr = xfer_ext_base_addr; | ||
+ | |||
+ | // Set the transfer base address | ||
+ | xcbase(xfer_ext_base_addr); | ||
+ | |||
+ | // fuc5 crypt cxset instruction | ||
+ | // The next xfer instruction will be overridden | ||
+ | // and target changes from DMA to crypto | ||
+ | cxset(0x01); | ||
+ | |||
+ | u32 crypt_reg_flag = 0x00060000; | ||
+ | u32 blob4_flcn_os_img_hash_addr = 0; | ||
+ | |||
+ | // Transfer data to crypto register c6 | ||
+ | xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag)); | ||
+ | |||
+ | // fuc5 crypt cxset instruction | ||
+ | // The next xfer instruction will be overridden | ||
+ | // and target changes from DMA to crypto | ||
+ | cxset(0x01); | ||
+ | |||
+ | // Wait for all data loads/stores to finish | ||
+ | xdwait(); | ||
+ | |||
+ | cmov(c7, c6); | ||
+ | cxor(c7, c7); | ||
+ | |||
+ | // fuc5 crypt cauth instruction | ||
+ | // Set auth_addr to 0x100, auth_size to 0x1300 and some unknown flags | ||
+ | cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08)); | ||
+ | |||
+ | // Clear interrupt flags | ||
+ | *(u8 *)flags_ie0 = 0; | ||
+ | *(u8 *)flags_ie1 = 0; | ||
+ | |||
+ | // Jump to the Payload blob's Falcon OS image | ||
+ | exec_flcn_os_img(); | ||
+ | |||
+ | return 0x0F0F0F0F; | ||
== Key data == | == Key data == | ||
− | Small buffer stored after | + | Small buffer stored after the [[#Boot|Boot]] blob and used across all stages. |
{| class="wikitable" border="1" | {| class="wikitable" border="1" | ||
Line 1,516: | Line 1,800: | ||
| 0x10 | | 0x10 | ||
| 0x10 | | 0x10 | ||
− | | blob0 auth hash | + | | blob0 ([[#Boot|Boot]]) auth hash |
|- | |- | ||
| 0x20 | | 0x20 | ||
| 0x10 | | 0x10 | ||
− | | blob1 auth hash | + | | blob1 ([[#KeygenLdr|KeygenLdr]]) auth hash |
|- | |- | ||
| 0x30 | | 0x30 | ||
| 0x10 | | 0x10 | ||
− | | blob2 auth hash | + | | blob2 ([[#Keygen|Keygen]]) auth hash |
|- | |- | ||
| 0x40 | | 0x40 | ||
| 0x10 | | 0x10 | ||
− | | blob2 AES IV | + | | blob2 ([[#Keygen|Keygen]]) AES IV |
|- | |- | ||
| 0x50 | | 0x50 | ||
Line 1,540: | Line 1,824: | ||
| 0x70 | | 0x70 | ||
| 0x04 | | 0x04 | ||
− | | blob0 size | + | | blob0 ([[#Boot|Boot]]) size |
|- | |- | ||
| 0x74 | | 0x74 | ||
| 0x04 | | 0x04 | ||
− | | blob1 size | + | | blob1 ([[#KeygenLdr|KeygenLdr]]) size |
|- | |- | ||
| 0x78 | | 0x78 | ||
| 0x04 | | 0x04 | ||
− | | blob2 size | + | | blob2 ([[#Keygen|Keygen]]) size |
+ | |- | ||
+ | | 0x7C | ||
+ | | 0x04 | ||
+ | | [6.2.0+] blob3 ([[#Loader|Loader]]) size | ||
|- | |- | ||
+ | | 0x80 | ||
+ | | 0x04 | ||
+ | | [6.2.0+] blob4 ([[#Payload|Payload]]) size | ||
|} | |} | ||
== Notes == | == Notes == | ||
− | |||
[https://wiki.0x04.net/wiki/Marcin_Ko%C5%9Bcielnicki mwk] shared additional info learned from RE of falcon processors over the years, which hasn't made it into envytools documentation yet: | [https://wiki.0x04.net/wiki/Marcin_Ko%C5%9Bcielnicki mwk] shared additional info learned from RE of falcon processors over the years, which hasn't made it into envytools documentation yet: | ||
=== cxset === | === cxset === | ||
− | |||
cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions. | cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions. | ||
Line 1,567: | Line 1,856: | ||
==== Override Types ==== | ==== Override Types ==== | ||
− | |||
Unlisted values are unknown, but probably do something. | Unlisted values are unknown, but probably do something. | ||
Line 1,583: | Line 1,871: | ||
==== DMA-Related Instructions ==== | ==== DMA-Related Instructions ==== | ||
− | |||
At least the following instructions may have changed behavior, and count against the cxset "count" argument: <code>xdwait</code>, <code>xdst</code>, <code>xdld</code>. | At least the following instructions may have changed behavior, and count against the cxset "count" argument: <code>xdwait</code>, <code>xdst</code>, <code>xdld</code>. | ||
Line 1,589: | Line 1,876: | ||
=== Register ACLs === | === Register ACLs === | ||
− | |||
Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected). | Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected). | ||
=== Authenticated Mode Entry/Exit === | === Authenticated Mode Entry/Exit === | ||
− | |||
Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check. | Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check. | ||
Line 1,599: | Line 1,884: | ||
=== Unknown Instructions === | === Unknown Instructions === | ||
− | |||
<code>00000000: f5 3c XY e0 cchmod $cY $cX</code> - likely forces a change of permissions. | <code>00000000: f5 3c XY e0 cchmod $cY $cX</code> - likely forces a change of permissions. | ||
Revision as of 18:12, 21 November 2018
TSEC (Tegra Security Co-processor) is a dedicated unit powered by a NVIDIA Falcon microprocessor with crypto extensions.
Driver
A host driver for communicating with the TSEC is mapped to physical address 0x54500000 with a total size of 0x40000 bytes and exposes several registers.
Registers
Registers from 0x54500000 to 0x54501000 are used to configure values for the host interface (HOST1X).
Registers from 0x54501000 to 0x54502000 are a MMIO window for communicating with the Falcon microprocessor. From this range, the subset of registers from 0x54501400 to 0x54501FE8 are specific to the TSEC.
Name | Address | Width |
---|---|---|
TSEC_THI_CTXSW | 0x54500020 | 0x04 |
TSEC_THI_METHOD0 | 0x54500040 | 0x04 |
TSEC_THI_METHOD1 | 0x54500044 | 0x04 |
TSEC_THI_INT_STATUS | 0x54500078 | 0x04 |
TSEC_THI_INT_MASK | 0x5450007C | 0x04 |
TSEC_THI_UNK0 | 0x54500084 | 0x04 |
TSEC_THI_SLCG_OVERRIDE_HIGH_A | 0x54500088 | 0x04 |
TSEC_THI_SLCG_OVERRIDE_LOW_A | 0x5450008C | 0x04 |
TSEC_THI_CLK_OVERRIDE | 0x54500E00 | 0x04 |
FALCON_IRQSSET | 0x54501000 | 0x04 |
FALCON_IRQSCLR | 0x54501004 | 0x04 |
FALCON_IRQSTAT | 0x54501008 | 0x04 |
FALCON_IRQMODE | 0x5450100C | 0x04 |
FALCON_IRQMSET | 0x54501010 | 0x04 |
FALCON_IRQMCLR | 0x54501014 | 0x04 |
FALCON_IRQMASK | 0x54501018 | 0x04 |
FALCON_IRQDEST | 0x5450101C | 0x04 |
FALCON_SCRATCH0 | 0x54501040 | 0x04 |
FALCON_SCRATCH1 | 0x54501044 | 0x04 |
FALCON_ITFEN | 0x54501048 | 0x04 |
FALCON_IDLESTATE | 0x5450104C | 0x04 |
FALCON_CURCTX | 0x54501050 | 0x04 |
FALCON_NXTCTX | 0x54501054 | 0x04 |
FALCON_SCRATCH2 | 0x54501080 | 0x04 |
FALCON_SCRATCH3 | 0x54501084 | 0x04 |
FALCON_CGCTL | 0x545010A0 | 0x04 |
FALCON_ENGCTL | 0x545010A4 | 0x04 |
FALCON_CPUCTL | 0x54501100 | 0x04 |
FALCON_BOOTVEC | 0x54501104 | 0x04 |
FALCON_HWCFG | 0x54501108 | 0x04 |
FALCON_DMACTL | 0x5450110C | 0x04 |
FALCON_DMATRFBASE | 0x54501110 | 0x04 |
FALCON_DMATRFMOFFS | 0x54501114 | 0x04 |
FALCON_DMATRFCMD | 0x54501118 | 0x04 |
FALCON_DMATRFFBOFFS | 0x5450111C | 0x04 |
FALCON_CPUCTL_ALIAS | 0x54501130 | 0x04 |
FALCON_IMFILLRNG1 | 0x54501154 | 0x04 |
FALCON_IMFILLCTL | 0x54501158 | 0x04 |
FALCON_EXTERRADDR | 0x54501168 | 0x04 |
FALCON_EXTERRSTAT | 0x5450116C | 0x04 |
FALCON_CG2 | 0x5450117C | 0x04 |
FALCON_CODE_INDEX | 0x54501180 | 0x04 |
FALCON_CODE | 0x54501184 | 0x04 |
FALCON_CODE_VIRT_ADDR | 0x54501188 | 0x04 |
FALCON_DATA_INDEX0 | 0x545011C0 | 0x04 |
FALCON_DATA0 | 0x545011C4 | 0x04 |
FALCON_DATA_INDEX1 | 0x545011C8 | 0x04 |
FALCON_DATA1 | 0x545011CC | 0x04 |
FALCON_DATA_INDEX2 | 0x545011D0 | 0x04 |
FALCON_DATA2 | 0x545011D4 | 0x04 |
FALCON_DATA_INDEX3 | 0x545011D8 | 0x04 |
FALCON_DATA3 | 0x545011DC | 0x04 |
FALCON_DATA_INDEX4 | 0x545011E0 | 0x04 |
FALCON_DATA4 | 0x545011E4 | 0x04 |
FALCON_DATA_INDEX5 | 0x545011E8 | 0x04 |
FALCON_DATA5 | 0x545011EC | 0x04 |
FALCON_DATA_INDEX6 | 0x545011F0 | 0x04 |
FALCON_DATA6 | 0x545011F4 | 0x04 |
FALCON_DATA_INDEX7 | 0x545011F8 | 0x04 |
FALCON_DATA7 | 0x545011FC | 0x04 |
FALCON_ICD_CMD | 0x54501200 | 0x04 |
FALCON_ICD_ADDR | 0x54501204 | 0x04 |
FALCON_ICD_WDATA | 0x54501208 | 0x04 |
FALCON_ICD_RDATA | 0x5450120C | 0x04 |
FALCON_SCTL | 0x54501240 | 0x04 |
TSEC_SCP_CTL_UNK0 | 0x54501400 | 0x04 |
TSEC_SCP_CTL_UNK1 | 0x54501404 | 0x04 |
TSEC_SCP_CTL_STAT | 0x54501408 | 0x04 |
TSEC_SCP_CTL_AUTH_MODE | 0x5450140C | 0x04 |
TSEC_SCP_CTL_UNK2 | 0x54501410 | 0x04 |
TSEC_SCP_CTL_PKEY | 0x54501418 | 0x04 |
TSEC_SCP_CTL_UNK3 | 0x54501420 | 0x04 |
TSEC_SCP_CTL_UNK4 | 0x54501428 | 0x04 |
TSEC_SCP_CTL_UNK5 | 0x54501430 | 0x04 |
TSEC_SCP_UNK0 | 0x54501454 | 0x04 |
TSEC_SCP_UNK1 | 0x54501458 | 0x04 |
TSEC_SCP_UNK2 | 0x54501470 | 0x04 |
TSEC_SCP_UNK3 | 0x54501480 | 0x04 |
TSEC_SCP_UNK4 | 0x54501490 | 0x04 |
TSEC_UNK0 | 0x54501500 | 0x04 |
TSEC_UNK1 | 0x54501504 | 0x04 |
TSEC_UNK2 | 0x5450150C | 0x04 |
TSEC_UNK3 | 0x54501510 | 0x04 |
TSEC_UNK4 | 0x54501514 | 0x04 |
TSEC_UNK5 | 0x54501518 | 0x04 |
TSEC_UNK6 | 0x5450151C | 0x04 |
TSEC_UNK7 | 0x54501528 | 0x04 |
TSEC_UNK8 | 0x5450152C | 0x04 |
TSEC_TFBIF_MCCIF_UNK0 | 0x54501600 | 0x04 |
TSEC_TFBIF_MCCIF_FIFOCTRL | 0x54501604 | 0x04 |
TSEC_TFBIF_MCCIF_UNK1 | 0x54501608 | 0x04 |
TSEC_TFBIF_MCCIF_UNK2 | 0x5450160C | 0x04 |
TSEC_TFBIF_UNK0 | 0x54501630 | 0x04 |
TSEC_TFBIF_UNK1 | 0x54501634 | 0x04 |
TSEC_TFBIF_UNK2 | 0x54501640 | 0x04 |
TSEC_TFBIF_UNK3 | 0x54501644 | 0x04 |
TSEC_TFBIF_UNK4 | 0x54501648 | 0x04 |
TSEC_DMA_CMD | 0x54501700 | 0x04 |
TSEC_DMA_ADDR | 0x54501704 | 0x04 |
TSEC_DMA_VAL | 0x54501708 | 0x04 |
TSEC_DMA_UNK | 0x5450170C | 0x04 |
TSEC_TEGRA_UNK0 | 0x54501800 | 0x04 |
TSEC_TEGRA_UNK1 | 0x54501824 | 0x04 |
TSEC_TEGRA_UNK2 | 0x54501828 | 0x04 |
TSEC_TEGRA_UNK3 | 0x5450182C | 0x04 |
TSEC_TEGRA_CTL | 0x54501838 | 0x04 |
FALCON_IRQMSET
Used for configuring Falcon's IRQs.
FALCON_IRQDEST
Used for configuring Falcon's IRQs.
FALCON_SCRATCH0
MMIO register for reading/writing data to Falcon.
FALCON_SCRATCH1
MMIO register for reading/writing data to Falcon.
FALCON_ITFEN
Bits | Description |
---|---|
0 | FALCON_ITFEN_CTXEN |
1 | FALCON_ITFEN_MTHDEN |
Used for enabling/disabling Falcon interfaces.
FALCON_IDLESTATE
Bits | Description |
---|---|
0 | FALCON_IDLESTATE_FALCON_BUSY |
Used for detecting if Falcon is busy or not.
FALCON_CPUCTL
Bits | Description |
---|---|
0 | FALCON_CPUCTL_IINVAL |
1 | FALCON_CPUCTL_STARTCPU |
2 | FALCON_CPUCTL_SRESET |
3 | FALCON_CPUCTL_HRESET |
4 | FALCON_CPUCTL_HALTED |
5 | FALCON_CPUCTL_STOPPED |
Used for signaling the Falcon CPU.
FALCON_BOOTVEC
Takes the Falcon's boot vector address.
FALCON_DMACTL
Bits | Description |
---|---|
0 | FALCON_DMACTL_REQUIRE_CTX |
1 | FALCON_DMACTL_DMEM_SCRUBBING |
2 | FALCON_DMACTL_IMEM_SCRUBBING |
3-6 | FALCON_DMACTL_DMAQ_NUM |
7 | FALCON_DMACTL_SECURE_STAT |
Used for configuring the Falcon's DMA engine.
FALCON_DMATRFBASE
Takes the host's base address for transferring data to/from the Falcon (DMA).
FALCON_DMATRFMOFFS
Takes the offset for the host's source memory being transferred.
FALCON_DMATRFCMD
Bits | Description |
---|---|
0 | FALCON_DMATRFCMD_FULL |
1 | FALCON_DMATRFCMD_IDLE |
2-3 | FALCON_DMATRFCMD_SEC |
4 | FALCON_DMATRFCMD_IMEM |
5 | FALCON_DMATRFCMD_WRITE |
8-10 | FALCON_DMATRFCMD_SIZE |
12-14 | FALCON_DMATRFCMD_CTXDMA |
Used for configuring DMA transfers.
FALCON_DMATRFFBOFFS
Takes the offset for Falcon's target memory being transferred.
TSEC_SCP_CTL_STAT
Bits | Description |
---|---|
20 | TSEC_SCP_CTL_STAT_DEBUG_MODE |
TSEC_SCP_CTL_PKEY
Bits | Description |
---|---|
0 | TSEC_SCP_CTL_PKEY_REQUEST_RELOAD |
1 | TSEC_SCP_CTL_PKEY_LOADED |
TSEC_DMA_CMD
Bits | Description |
---|---|
0 | TSEC_DMA_CMD_READ |
1 | TSEC_DMA_CMD_WRITE |
4-7 | TSEC_DMA_CMD_UNK |
12 | TSEC_DMA_CMD_BUSY |
13 | TSEC_DMA_CMD_ERROR |
31 | TSEC_DMA_CMD_INIT |
A DMA read/write operation requires bits TSEC_DMA_CMD_INIT and TSEC_DMA_CMD_READ/TSEC_DMA_CMD_WRITE to be set in TSEC_DMA_CMD.
During the transfer, the TSEC_DMA_CMD_BUSY bit is set.
Accessing an invalid address causes bit TSEC_DMA_CMD_ERROR to be set.
TSEC_DMA_ADDR
Takes the address for DMA transfers between TSEC and HOST1X (master and clients).
TSEC_DMA_VAL
Takes the value for DMA transfers between TSEC and HOST1X (master and clients).
TSEC_DMA_UNK
Always 0xFFF.
TSEC_TEGRA_CTL
Bits | Description |
---|---|
16 | TSEC_TEGRA_CTL_TKFI_KFUSE |
17 | TSEC_TEGRA_CTL_TKFI_RESTART_FSM_KFUSE |
24 | TSEC_TEGRA_CTL_TMPI_FORCE_IDLE_INPUTS_I2C |
25 | TSEC_TEGRA_CTL_TMPI_RESTART_FSM_HOST1X |
26 | TSEC_TEGRA_CTL_TMPI_RESTART_FSM_APB |
27 | TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C |
Boot Process
TSEC is configured and initialized by the first bootloader during key generation.
[6.2.0+] TSEC is now configured at the end of the first bootloader's main function.
Initialization
During this stage several clocks are programmed.
// Program the HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X enable_host1x_clkrst(); // Program the TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC enable_tsec_clkrst(); // Program the SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE enable_sor_safe_clkrst(); // Program the SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 enable_sor0_clkrst(); // Program the SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 enable_sor1_clkrst(); // Program the KFUSE clock resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE enable_kfuse_clkrst();
Configuration
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
// Clear the Falcon DMA control register *(u32 *)FALCON_DMACTL = 0; // Enable Falcon IRQs *(u32 *)FALCON_IRQMSET = 0xFFF2; // Enable Falcon IRQs *(u32 *)FALCON_IRQDEST = 0xFFF0; // Enable Falcon interfaces *(u32 *)FALCON_ITFEN = 0x03; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle();
Firmware loading
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
// Set DMA transfer base address to 0x40011900 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x400119; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0xF00) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
[6.2.0+] The transfer base address and size of the Falcon firmware code changed.
// Set DMA transfer base address to 0x40010E00 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x40010E; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0x2900) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
Firmware booting
Falcon is booted up and the first bootloader waits for it to finish.
// Set magic value in host1x scratch space *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle(); u32 boot_res = 0; // The bootloader allows the TSEC two seconds from this point to do its job u32 maximum_time = read_timer() + 2000000; while (!boot_res) { // Read boot result from scratch1 MMIO boot_res = *(u32 *)FALCON_SCRATCH1; // Read from TIMERUS_CNTR_1US (microseconds from boot) u32 current_time = read_timer(); // Booting is taking too long if (current_time > maximum_time) panic(); } // Invalid boot result was returned if (boot_res != 0xB0B0B0B0) panic();
[6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.
// Set magic value in host1x scratch space *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Infinite loop deadlock();
Device key generation
The TSEC device key is generated by reading SOR1 registers modified by the Falcon CPU.
// Clear magic value in host1x scratch space *(u32 *)0x50003300 = 0; // Read TSEC device key u32 tsec_device_key[4]; tsec_device_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB; tsec_device_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB; tsec_device_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB; tsec_device_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB; // Clear SOR1 registers *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0; if (out_size < 0x10) out_size = 0x10; // Copy back the TSEC device key memcpy(out_buf, tsec_device_key, out_size);
[6.2.0+] This is now done inside an encrypted TSEC payload.
Cleanup
Clocks and resets are disabled before returning.
// Deprogram KFUSE clock and resets // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE disable_kfuse_clkrst(); // Deprogram SOR1 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1 disable_sor1_clkrst(); // Deprogram SOR0 clock and resets // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0 disable_sor0_clkrst(); // Deprogram SOR_SAFE clock and resets // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE disable_sor_safe_clkrst(); // Deprogram TSEC clock and resets // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC disable_tsec_clkrst(); // Deprogram HOST1X clock and resets // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X disable_host1x_clkrst(); return;
TSEC Firmware
The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs (names are unofficial): Boot (unencrypted and unauthenticated code), KeygenLdr (unencrypted and authenticated code), Keygen (encrypted and authenticated code) and key data.
[6.2.0+] There are now 6 blobs (names are unofficial): Boot (unencrypted and unauthenticated code), Loader (unencrypted and unauthenticated code), KeygenLdr (unencrypted and authenticated code), Keygen (encrypted and authenticated code), Payload (part unencrypted and unauthenticated code, part encrypted and authenticated code) and key data.
Firmware can be disassembled with envytools' envydis:
envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt
Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.
Boot
During this stage, key data is loaded and KeygenLdr is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader.
[6.2.0+] During this stage, key data is loaded and execution jumps to Loader.
Initialization
Falcon sets up it's own stack pointer.
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Set the stack pointer *(u32 *)sp = data_seg_size;
Main
Falcon reads the key data, authenticates, loads and executes KeygenLdr and finally sets the device key.
u32 boot_base_addr = 0; u8 key_data_buf[0x7C]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x7C; read_code(key_data_buf, key_data_addr, key_data_size); // Read the next code segment into boot base u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); u32 boot_res = 0; bool is_done = false; u32 time = 0; bool is_blob_dec = false; while (!is_done) { if (time > 4000000) { // Write boot failed (timeout) magic to FALCON_SCRATCH1 boot_res = 0xC0C0C0C0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01) u32 key_version = *(u32 *)FALCON_SCRATCH0; if (key_version == 0x64) { // Skip all next stages boot_res = 0xB0B0B0B0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } else { if (key_version > 0x03) boot_res = 0xD0D0D0D0; // Invalid key version else if (key_version == 0) boot_res = 0xB0B0B0B0; // No keys used else { u32 key_buf[0x7C]; // Copy key data memcpy(key_buf, key_data_buf, 0x7C); u32 crypt_reg_flag = 0x00060000; u32 blob1_hash_addr = key_buf + 0x20; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size cauth((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); // Transfer data to crypto register c6 xdst(0, (blob1_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); // Jump to KeygenLdr u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec); is_blob_dec = true; // Set this to prevent decrypting again // Set boot finish magic on success if (keygenldr_res == 0) boot_res = 0xB0B0B0B0 } // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = boot_res; if (boot_res == 0xB0B0B0B0) is_done = true; } time++; } // Write TSEC device key to registers set_device_key(key_data_buf); return boot_res;
[6.2.0+] Falcon reads the key data and jumps to Loader.
u8 key_data_buf[0x84]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x84; read_code(key_data_buf, key_data_addr, key_data_size); // Calculate the next blob's address u32 blob4_size = *(u32 *)(key_data_buf + 0x80); u32 blob0_size = *(u32 *)(key_data_buf + 0x70); u32 blob1_size = *(u32 *)(key_data_buf + 0x74); u32 blob2_size = *(u32 *)(key_data_buf + 0x78); u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size); // Jump to next blob (void *)blob3_addr(); return 0;
set_device_key
This method takes key_data_buf as argument and writes the TSEC key to SOR1 registers.
// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40) *(u32 *)TSEC_DMA_UNK = 0xFFF; // Read the key's words u32 key0 = *(u32 *)(key_data_buf + 0x00); u32 key1 = *(u32 *)(key_data_buf + 0x04); u32 key2 = *(u32 *)(key_data_buf + 0x08); u32 key3 = *(u32 *)(key_data_buf + 0x0C); u32 result = 0; // Write to SOR1 register result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2); // Failed to write if (result) return result; // Write to SOR1 register result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3); // Failed to write if (result) return result; return result;
tsec_dma_write
This method takes addr and value as arguments and performs a DMA write using TSEC MMIO.
u32 result = 0; // Wait for TSEC DMA engine // This waits for bit 0x0C in TSEC_DMA_CMD to be 0 result = wait_tsec_dma(); // Wait failed if (result) return 1; // Set the destination address // This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40) *(u32 *)TSEC_DMA_ADDR = addr; // Set the value // This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40) *(u32 *)TSEC_DMA_VAL = value; // Start transfer? // This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40) *(u32 *)TSEC_DMA_CMD = 0x800000F2; // Wait for TSEC DMA engine // This waits for bit 0x0C in TSEC_DMA_CMD to be 0 result = wait_tsec_dma(); // Wait failed if (result) return 1; return 0;
KeygenLdr
This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Keygen.
Main
// Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; *(u8 *)flags_ie2 = 0; // fuc5 crypt cxset instruction // Clear overrides? cxset(0x80); // fuc5 crypt cauth instruction // Clear bit 0x13 in cauth cauth(cauth_old & ~(1 << 0x13)); // Set the target port for memory transfers xtargets(0); // Wait for all data loads/stores to finish xdwait(); // Wait for all code loads to finish xcwait(); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); // Transfer data to crypto register c0 // This should clear any leftover data xdst(0, 0); // Wait for all data loads/stores to finish xdwait(); // Clear all crypto registers, except c6 which is used for auth cxor(c0, c0); cmov(c1, c0); cmov(c2, c0); cmov(c3, c0); cmov(c4, c0); cmov(c5, c0); cmov(c7, c0); // Clear TSEC_TEGRA_CTL_TKFI_KFUSE // This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40) *(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF; // Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD // This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40) *(u32 *)TSEC_SCP_CTL_PKEY |= 0x01; u32 is_pkey_loaded = 0; // Wait for TSEC_SCP_CTL_PKEY_LOADED while (!is_pkey_loaded) is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Check stack bounds if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800)) exit(); // Decrypt and load Keygen stage load_keygen(key_buf, key_version, is_blob_dec); // Partially unknown fuc5 instruction // Likely forces a change of permissions cchmod(c0, c0); // Clear all crypto registers and propagate permissions cxor(c0, c0); cxor(c1, c1); cxor(c2, c2); cxor(c3, c3); cxor(c4, c4); cxor(c5, c5); cxor(c6, c6); cxor(c7, c7); // Exit Authenticated Mode // This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40) *(u32 *)TSEC_SCP_CTL_AUTH_MODE = 0; return;
load_keygen
u32 res = 0; u32 boot_base_addr = 0; u32 blob0_addr = 0; u32 blob0_size = *(u32 *)(key_buf + 0x70); // Load blob0 code again read_code(boot_base_addr, blob0_addr, blob0_size); // Generate "CODE_SIG_01" key into c4 crypto register gen_usr_key(0, 0); // Encrypt buffer with c4 u8 sig_key[0x10]; enc_buf(sig_key, blob0_size); u32 src_addr = boot_base_addr; u32 src_size = blob0_size; u32 iv_addr = sig_key; u32 dst_addr = sig_key; u32 mode = 0x02; // AES-CMAC u32 version = 0; // Do AES-CMAC over blob0 code do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Compare the hashes if (memcmp(dst_addr, key_buf + 0x10, 0x10)) { res = 0xDEADBEEF; return res; } u32 blob1_size = *(u32 *)(key_buf + 0x74); // Decrypt Keygen blob if needed if (!is_blob_dec) { // Read Stage2's size from key buffer u32 blob2_size = *(u32 *)(key_buf + 0x78); // Check stack bounds if (*(u32 *)sp > blob2_size) { u32 boot_base_addr = 0; u32 blob2_virt_addr = blob0_size + blob1_size; u32 blob2_addr = blob2_virt_addr + 0x100; // Read Keygen encrypted blob read_code(boot_base_addr, blob2_addr, blob2_size); // Generate "CODE_ENC_01" key into c4 crypt register gen_usr_key(0x01, 0x01); u32 src_addr = boot_base_addr; u32 src_size = blob2_size; u32 iv_addr = key_buf + 0x40; u32 dst_addr = boot_base_addr; u32 mode = 0; // AES-128-ECB u32 version = 0; // Decrypt Keygen blob do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Upload the next code segment into Falcon's CODE region bool use_secret = true; upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret); // Clear out the decrypted blob memset(boot_base_addr, 0, blob2_size); } } // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); u32 crypt_reg_flag = 0x00060000; u32 blob2_hash_addr = key_buf + 0x30; // Transfer data to crypto register c6 xdst(0, (blob2_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); // Save previous cauth value u32 c_old = cauth_old; // fuc5 crypt cauth instruction // Set auth_addr to blob2_virt_addr and auth_size to blob2_size cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10)); u32 hovi_key_addr = 0; // Select next stage key if (key_version == 0x01) // Use HOVI_EKS_01 hovi_key_addr = key_buf + 0x50; else if (key_version == 0x02) // Use HOVI_COMMON_01 hovi_key_addr = key_buf + 0x60; else if (key_version == 0x03) // Use empty key hovi_key_addr = key_buf + 0x00; else res = 0xD0D0D0D0 // Jump to Keygen if (hovi_key_addr) res = exec_keygen(hovi_key_addr, key_version); // Clear out key data memset(key_buf, 0, 0x7C); // fuc5 crypt cauth instruction // Restore previous cauth value cauth(c_old); return res;
gen_usr_key
This method takes type and mode as arguments and generates a key.
u8 seed_buf[0x10]; // Read a 16 bytes seed based on supplied type /* Type 0: "CODE_SIG_01" + null padding Type 1: "CODE_ENC_01" + null padding */ get_seed(seed_buf, type); // This will write the seed into crypto register c0 crypt_store(0, seed_buf); // fuc5 csecret instruction // Load selected secret into crypto register c1 csecret(c1, 0x26); // fuc5 ckeyreg instruction // Bind c1 register as the key for enc/dec operations ckeyreg(c1); // fuc5 cenc instruction // Encrypt seed_buf (in c0) using keyreg value as key into c1 cenc(c1, c0); // fuc5 csigenc instruction // Encrypt c1 register with the auth signature stored in c6 csigenc(c1, c1); // Copy the result into c4 (will be used as key) cmov(c4, c1); // Do key expansion (for decryption) if (mode != 0) ckexp(c4, c4); // fuc5 ckexp instruction return;
enc_buffer
This method takes buf (a 16 bytes buffer) and size as arguments and encrypts the supplied buffer.
// Set first 3 words to null *(u32 *)(buf + 0x00) = 0; *(u32 *)(buf + 0x04) = 0; *(u32 *)(buf + 0x08) = 0; // Swap halves (b16, b32 and b16 again) hswap(size); // Store the size as the last word *(u32 *)(buf + 0x0C) = size; // This will write buf into crypto register c3 crypt_store(0x03, buf); // fuc5 ckeyreg instruction // Bind c4 register (from keygen) as the key for enc/dec operations ckeyreg(c4); // fuc5 cenc instruction // Encrypt buf (in c3) using keyreg value as key into c5 cenc(c5, c3); // This will read into buf from crypto register c5 crypt_load(0x05, buf); return;
do_crypto
This is the method responsible for all crypto operations performed during KeygenLdr. It takes src_addr, src_size, iv_addr, dst_addr, mode and crypt_ver as arguments.
// Check for invalid source data size if (!src_size || (src_size & 0x0F)) exit(); // Check for invalid source data address if (src_addr & 0x0F) exit(); // Check for invalid destination data address if (dst_addr & 0x0F) exit(); // Use IV if available if (iv_addr) { // This will write the iv_addr into crypto register c5 crypt_store(0x05, iv_addr); } else { // Clear c5 register (use null IV) cxor(c5, c5); } // Use key in c4 ckeyreg(c4); // AES-128-CBC decrypt if (mode == 0x00) { // Create crypto script with 5 instructions cs0begin(0x05); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cdec(c2, c3); // Decrypt from c3 into c2 cxor(c5, c2); // XOR c2 with c5 and store in c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 cmov(c5, c3); // Move c3 into c5 } else if (mode == 0x01) // AES-128-CBC encrypt { // Create crypto script with 4 instructions cs0begin(0x04); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cxor(c3, c5); // XOR c5 with c3 and store in c3 cenc(c5, c3); // Encrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else if (mode == 0x02) // AES-CMAC { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cxor(c5, c3); // XOR c5 with c3 and store in c3 cenc(c5, c5); // Encrypt from c5 into c5 } else if (mode == 0x03) // AES-128-ECB decrypt { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cdec(c5, c3); // Decrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else if (mode == 0x04) // AES-128-ECB encrypt { // Create crypto script with 3 instructions cs0begin(0x03); cxsin(c3); // Read 0x10 bytes from crypto stream into c3 cenc(c5, c3); // Encrypt from c3 into c5 cxsout(c5); // Write 0x10 bytes into crypto stream from c5 } else return; // Main loop while (src_size > 0) { u32 blk_count = (src_size >> 0x04); if (blk_count > 0x10) blk_count = 0x10; // Check size align if (blk_count & (blk_count - 0x01)) blk_count = 0x01; u32 blk_size = (blk_count << 0x04); u32 crypt_xfer_src = 0; u32 crypt_xfer_dst = 0; if (block_size == 0x20) { crypt_xfer_src = (0x00030000 | src_addr); crypt_xfer_dst = (0x00030000 | dst_addr); // Execute crypto script 2 times (1 for each block) cs0exec(0x02); } if (block_size == 0x40) { crypt_xfer_src = (0x00040000 | src_addr); crypt_xfer_dst = (0x00040000 | dst_addr); // Execute crypto script 4 times (1 for each block) cs0exec(0x04); } if (block_size == 0x80) { crypt_xfer_src = (0x00050000 | src_addr); crypt_xfer_dst = (0x00050000 | dst_addr); // Execute crypto script 8 times (1 for each block) cs0exec(0x08); } if (block_size == 0x100) { crypt_xfer_src = (0x00060000 | src_addr); crypt_xfer_dst = (0x00060000 | dst_addr); // Execute crypto script 16 times (1 for each block) cs0exec(0x10); } else { crypt_xfer_src = (0x00020000 | src_addr); crypt_xfer_dst = (0x00020000 | dst_addr); // Execute crypto script 1 time (1 for each block) cs0exec(0x01); // Ensure proper block size block_size = 0x10; } // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto input/output stream if (crypt_ver == 0x01) cxset(0xA1); // Flag 0xA0 is (0x80 | 0x20) else cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream // Transfer data into the crypto input/output stream xdst(crypt_xfer_src, crypt_xfer_src); // AES-CMAC only needs one more xfer instruction if (mode == 0x02) { // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto input/output stream if (crypt_ver == 0x01) cxset(0xA1); // Flag 0xA0 is (0x80 | 0x20) else cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream // Wait for all data loads/stores to finish xdwait(); } else // AES enc/dec needs 2 more xfer instructions { // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto input/output stream if (crypt_ver == 0x01) cxset(0xA2); // Flag 0xA0 is (0x80 | 0x20) else cxset(0x22); // Flag 0x20 is external mem <-> crypto input/output stream // Transfer data from the crypto input/output stream xdld(crypt_xfer_dst, crypt_xfer_dst); // Wait for all data loads/stores to finish xdwait(); // Increase the destination address by block size dst_addr += block_size; } // Increase the source address by block size src_addr += block_size; // Decrease the source size by block size src_size -= block_size; } // AES-CMAC result is in c5 if (mode == 0x02) { // This will read into dst_addr from crypto register c5 crypt_load(0x05, dst_addr); } return;
Keygen
This stage is decrypted by KeygenLdr using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC device key.
Loader
This stage starts by authenticating and executing KeygenLdr which in turn authenticates, decrypts and executes Keygen (both blobs remain unchanged from previous firmware versions). After the TSEC device key has been generated, execution returns to this stage which then parses and executes Payload.
Main
u8 key_data_buf[0x84]; u8 tmp_key_data_buf[0x84]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x84; read_code(key_data_buf, key_data_addr, key_data_size); // Read the KeygenLdr blob from memory u32 boot_base_addr = 0; u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); // Backup the key data memcpy(tmp_key_data_buf, key_data_buf, 0x84); // Save previous cauth value u32 c_old = cauth_old; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size cauth((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // The next 2 xfer instructions will be overridden // and target changes from DMA to crypto cxset(0x02); u32 crypt_reg_flag = 0x00060000; u32 blob1_hash_addr = tmp_key_data_buf + 0x20; // Transfer data to crypto register c6 xdst(0, (blob1_hash_addr | crypt_reg_flag)); // Wait for all data loads/stores to finish xdwait(); u32 key_version = 0x01; bool is_blob_dec = false; // Jump to KeygenLdr u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec); // Set boot finish magic on success if (keygenldr_res == 0) keygenldr_res = 0xB0B0B0B0 // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = keygenldr_res; if (keygenldr_res != 0xB0B0B0B0) return keygenldr_res; // fuc5 crypt cauth instruction // Restore previous cauth value cauth(c_old); u8 flcn_hdr_buf[0x18]; u8 flcn_os_hdr_buf[0x10]; blob1_size = *(u32 *)(key_data_buf + 0x74); u32 blob2_size = *(u32 *)(key_data_buf + 0x78); u32 blob0_size = *(u32 *)(key_data_buf + 0x70); // Read the Payload blob's Falcon header from memory u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size); read_code(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18); blob1_size = *(u32 *)(key_data_buf + 0x74); blob2_size = *(u32 *)(key_data_buf + 0x78); blob0_size = *(u32 *)(key_data_buf + 0x70); u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C); // Read the Payload blob's Falcon OS header from memory u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size); read_code(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10); blob1_size = *(u32 *)(key_data_buf + 0x74); blob2_size = *(u32 *)(key_data_buf + 0x78); blob0_size = *(u32 *)(key_data_buf + 0x70); u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10); u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); // Read the Payload blob's Falcon OS image from memory u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size); read_code(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size); // Upload the Payload's Falcon OS image boot stub code segment into Falcon's CODE region u32 blob4_flcn_os_boot_virt_addr = 0; u32 blob4_flcn_os_boot_size = 0x100; use_secret = false; upload_code(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret); flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04); // Upload the Payload blob's Falcon OS encrypted image code segment into Falcon's CODE region u32 blob4_flcn_os_img_virt_addr = 0x100; u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100); use_secret = true; upload_code(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret); // Wait for all code loads to finish xcwait(); blob1_size = *(u32 *)(key_data_buf + 0x74); blob2_size = *(u32 *)(key_data_buf + 0x78); blob0_size = *(u32 *)(key_data_buf + 0x70); flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10); u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08); // Read the Payload blob's falcon OS image's hash from memory u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size); read_code(0, blob4_flcn_os_img_hash_addr, 0x10); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x03; data_seg_size &= 0x3FC0; u32 data_addr = 0x10; // Clear all data except the first 0x10 bytes (Payload blob's Falcon OS image's hash) for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++) { *(u32 *)(data_addr) = 0; data_addr += 0x04; } // Clear all crypto registers cxor(c0, c0); cxor(c1, c1); cxor(c2, c2); cxor(c3, c3); cxor(c4, c4); cxor(c5, c5); cxor(c6, c6); cxor(c7, c7); // Partially unknown fuc5 instruction // Likely forces a change of permissions cchmod(c0, c0); // Jump to Payload exec_payload(); return 0xB0B0B0B0;
Payload
This stage prepares the stack then authenticates, decrypts and executes the Payload blob's Falcon OS image.
Main
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x01; data_seg_size &= 0xFF00; // Set the stack pointer *(u32 *)sp = data_seg_size; // Jump to the Payload blob's Falcon OS image boot stub exec_flcn_os_boot(); // Halt execution exit(); return;
exec_flcn_os_boot
// Read the transfer base address from IO space u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE; // Copy transfer base address to data memory u32 scratch_data_addr = 0x300; *(u32 *)scratch_data_addr = xfer_ext_base_addr; // Set the transfer base address xcbase(xfer_ext_base_addr); // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto cxset(0x01); u32 crypt_reg_flag = 0x00060000; u32 blob4_flcn_os_img_hash_addr = 0; // Transfer data to crypto register c6 xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag)); // fuc5 crypt cxset instruction // The next xfer instruction will be overridden // and target changes from DMA to crypto cxset(0x01); // Wait for all data loads/stores to finish xdwait(); cmov(c7, c6); cxor(c7, c7); // fuc5 crypt cauth instruction // Set auth_addr to 0x100, auth_size to 0x1300 and some unknown flags cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08)); // Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; // Jump to the Payload blob's Falcon OS image exec_flcn_os_img(); return 0x0F0F0F0F;
Key data
Small buffer stored after the Boot blob and used across all stages.
Offset | Size | Description |
---|---|---|
0x00 | 0x10 | Empty |
0x10 | 0x10 | blob0 (Boot) auth hash |
0x20 | 0x10 | blob1 (KeygenLdr) auth hash |
0x30 | 0x10 | blob2 (Keygen) auth hash |
0x40 | 0x10 | blob2 (Keygen) AES IV |
0x50 | 0x10 | HOVI EKS seed |
0x60 | 0x10 | HOVI COMMON seed |
0x70 | 0x04 | blob0 (Boot) size |
0x74 | 0x04 | blob1 (KeygenLdr) size |
0x78 | 0x04 | blob2 (Keygen) size |
0x7C | 0x04 | [6.2.0+] blob3 (Loader) size |
0x80 | 0x04 | [6.2.0+] blob4 (Payload) size |
Notes
mwk shared additional info learned from RE of falcon processors over the years, which hasn't made it into envytools documentation yet:
cxset
cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions.
for example: 000000de: f4 3c 02 cxset 0x2
can be read as: dma_override(type=crypto_reg, count=2)
The argument to cxset specifies the type of behavior change in the top 3 bits, and the number of DMA-related instructions the effect lasts for in the lower 5 bits.
Override Types
Unlisted values are unknown, but probably do something.
Value | Effect |
---|---|
0b000 | falcon data mem <-> falcon $cX register |
0b001 | external mem <-> crypto input/output stream |
0b011 | falcon data mem <-> crypto input/output stream |
0b100 | unknown, but can be combined with other types |
DMA-Related Instructions
At least the following instructions may have changed behavior, and count against the cxset "count" argument: xdwait
, xdst
, xdld
.
For example, if override type=0b000, then the "length" argument to xdst
is instead treated as the index of the target $cX register.
Register ACLs
Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected).
Authenticated Mode Entry/Exit
Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check.
Exit from Authenticated Mode must poke a special register before leaving authenticated code pages and a failure to do this would result in the Falcon core halting. Every Falcon based unit (TSEC, NVDEC, VIC) must map this register in their engine-specific subset of registers. In TSEC's case, the register is TSEC_SCP_CTL_AUTH_MODE.
Unknown Instructions
00000000: f5 3c XY e0 cchmod $cY $cX
- likely forces a change of permissions.
00000000: f5 3c XY a8 c_unk0 $cY $cX
- unknown crypto operation.
00000000: f5 3c XY a9 c_unk1 $cY $cX
- unknown crypto operation.
00000000: f5 3c 0X 90 crng $cX
- seems to initialize a crypto register with random data.