Difference between revisions of "TSEC"

From Nintendo Switch Brew
Jump to navigation Jump to search
(more TSEC goodness)
Line 1,583: Line 1,583:
 
<code>00000000: f5 3c XY a8    c_unk $cY $cX</code> - unknown crypto operation.
 
<code>00000000: f5 3c XY a8    c_unk $cY $cX</code> - unknown crypto operation.
  
<code>00000000: f5 3c 0X 90    c_unk $cX</code> - unknown crypto operation.
+
<code>00000000: f5 3c 0X 90    crng $cX</code> - seems to initialize a crypto register with random data.

Revision as of 22:24, 31 January 2018

TSEC (Tegra Security Co-processor) is a dedicated unit powered by a NVIDIA Falcon microprocessor with crypto extensions.

Driver

A host driver for communicating with the TSEC is mapped to physical address 0x54500000 with a total size of 0x40000 bytes and exposes several registers.

Registers

Registers from 0x54500000 to 0x54501000 are used to configure values for the host interface (HOST1X).

Registers from 0x54501000 to 0x54502000 are a MMIO window for communicating with the Falcon microprocessor. From this range, the subset of registers from 0x54501400 to 0x54501FE8 are specific to the TSEC.

Name Address Width
TSEC_THI_UNK0 0x54500020 0x04
TSEC_THI_INT_STATUS 0x54500078 0x04
TSEC_THI_INT_STATUS2 0x5450007C 0x04
TSEC_THI_UNK1 0x54500084 0x04
TSEC_THI_SLCG_OVERRIDE_HIGH_A 0x54500088 0x04
TSEC_THI_SLCG_OVERRIDE_LOW_A 0x5450008C 0x04
TSEC_THI_CLK_OVERRIDE 0x54500E00 0x04
FALCON_IRQSSET 0x54501000 0x04
FALCON_IRQSCLR 0x54501004 0x04
FALCON_IRQSTAT 0x54501008 0x04
FALCON_IRQMODE 0x5450100C 0x04
FALCON_IRQMSET 0x54501010 0x04
FALCON_IRQMCLR 0x54501014 0x04
FALCON_IRQMASK 0x54501018 0x04
FALCON_IRQDEST 0x5450101C 0x04
FALCON_SCRATCH0 0x54501040 0x04
FALCON_SCRATCH1 0x54501044 0x04
FALCON_ITFEN 0x54501048 0x04
FALCON_IDLESTATE 0x5450104C 0x04
FALCON_CURCTX 0x54501050 0x04
FALCON_NXTCTX 0x54501054 0x04
FALCON_SCRATCH2 0x54501080 0x04
FALCON_SCRATCH3 0x54501084 0x04
FALCON_CGCTL 0x545010A0 0x04
FALCON_ENGCTL 0x545010A4 0x04
FALCON_CPUCTL 0x54501100 0x04
FALCON_BOOTVEC 0x54501104 0x04
FALCON_HWCFG 0x54501108 0x04
FALCON_DMACTL 0x5450110C 0x04
FALCON_DMATRFBASE 0x54501110 0x04
FALCON_DMATRFMOFFS 0x54501114 0x04
FALCON_DMATRFCMD 0x54501118 0x04
FALCON_DMATRFFBOFFS 0x5450111C 0x04
FALCON_CPUCTL_ALIAS 0x54501130 0x04
FALCON_EXTERRADDR 0x54501168 0x04
FALCON_EXTERRSTAT 0x5450116C 0x04
FALCON_CG2 0x5450117C 0x04
FALCON_CODE_INDEX 0x54501180 0x04
FALCON_CODE 0x54501184 0x04
FALCON_CODE_VIRT_ADDR 0x54501188 0x04
FALCON_DATA_INDEX0 0x545011C0 0x04
FALCON_DATA0 0x545011C4 0x04
FALCON_DATA_INDEX1 0x545011C8 0x04
FALCON_DATA1 0x545011CC 0x04
FALCON_DATA_INDEX2 0x545011D0 0x04
FALCON_DATA2 0x545011D4 0x04
FALCON_DATA_INDEX3 0x545011D8 0x04
FALCON_DATA3 0x545011DC 0x04
FALCON_DATA_INDEX4 0x545011E0 0x04
FALCON_DATA4 0x545011E4 0x04
FALCON_DATA_INDEX5 0x545011E8 0x04
FALCON_DATA5 0x545011EC 0x04
FALCON_DATA_INDEX6 0x545011F0 0x04
FALCON_DATA6 0x545011F4 0x04
FALCON_DATA_INDEX7 0x545011F8 0x04
FALCON_DATA7 0x545011FC 0x04
FALCON_ICD_CMD 0x54501200 0x04
FALCON_ICD_ADDR 0x54501204 0x04
FALCON_ICD_WDATA 0x54501208 0x04
FALCON_ICD_RDATA 0x5450120C 0x04
FALCON_SCTL 0x54501240 0x04
TSEC_SCP_CTL_UNK0 0x54501400 0x04
TSEC_SCP_CTL_UNK1 0x54501404 0x04
TSEC_SCP_CTL_STAT 0x54501408 0x04
TSEC_SCP_CTL_AUTH_MODE 0x5450140C 0x04
TSEC_SCP_CTL_UNK2 0x54501410 0x04
TSEC_SCP_CTL_PKEY 0x54501418 0x04
TSEC_SCP_CTL_UNK3 0x54501420 0x04
TSEC_SCP_CTL_UNK4 0x54501428 0x04
TSEC_SCP_CTL_UNK5 0x54501430 0x04
TSEC_SCP_UNK0 0x54501454 0x04
TSEC_SCP_UNK1 0x54501458 0x04
TSEC_SCP_UNK2 0x54501470 0x04
TSEC_SCP_UNK3 0x54501480 0x04
TSEC_SCP_UNK4 0x54501490 0x04
TSEC_UNK0 0x54501500 0x04
TSEC_UNK1 0x54501504 0x04
TSEC_UNK2 0x5450150C 0x04
TSEC_UNK3 0x54501510 0x04
TSEC_UNK4 0x54501514 0x04
TSEC_UNK5 0x54501518 0x04
TSEC_UNK6 0x5450151C 0x04
TSEC_UNK7 0x54501528 0x04
TSEC_UNK8 0x5450152C 0x04
TSEC_TFBIF_MCCIF_UNK0 0x54501600 0x04
TSEC_TFBIF_MCCIF_FIFOCTRL 0x54501604 0x04
TSEC_TFBIF_MCCIF_UNK1 0x54501608 0x04
TSEC_TFBIF_MCCIF_UNK2 0x5450160C 0x04
TSEC_TFBIF_UNK0 0x54501630 0x04
TSEC_TFBIF_UNK1 0x54501634 0x04
TSEC_TFBIF_UNK2 0x54501640 0x04
TSEC_DMA_CMD 0x54501700 0x04
TSEC_DMA_ADDR 0x54501704 0x04
TSEC_DMA_VAL 0x54501708 0x04
TSEC_DMA_UNK 0x5450170C 0x04
TSEC_TEGRA_UNK0 0x54501800 0x04
TSEC_TEGRA_UNK1 0x54501824 0x04
TSEC_TEGRA_UNK2 0x54501828 0x04
TSEC_TEGRA_UNK3 0x5450182C 0x04
TSEC_TEGRA_CTL 0x54501838 0x04

FALCON_IRQMSET

Used for configuring Falcon's IRQs.

FALCON_IRQDEST

Used for configuring Falcon's IRQs.

FALCON_SCRATCH0

MMIO register for reading/writing data to Falcon.

FALCON_SCRATCH1

MMIO register for reading/writing data to Falcon.

FALCON_ITFEN

Bits Description
0 FALCON_ITFEN_CTXEN
1 FALCON_ITFEN_MTHDEN

Used for enabling/disabling Falcon interfaces.

FALCON_IDLESTATE

Bits Description
0 FALCON_IDLESTATE_FALCON_BUSY

Used for detecting if Falcon is busy or not.

FALCON_CPUCTL

Bits Description
0 FALCON_CPUCTL_IINVAL
1 FALCON_CPUCTL_STARTCPU
2 FALCON_CPUCTL_SRESET
3 FALCON_CPUCTL_HRESET
4 FALCON_CPUCTL_HALTED
5 FALCON_CPUCTL_STOPPED

Used for signaling the Falcon CPU.

FALCON_BOOTVEC

Takes the Falcon's boot vector address.

FALCON_DMACTL

Bits Description
0 FALCON_DMACTL_REQUIRE_CTX
1 FALCON_DMACTL_DMEM_SCRUBBING
2 FALCON_DMACTL_IMEM_SCRUBBING
3-6 FALCON_DMACTL_DMAQ_NUM
7 FALCON_DMACTL_SECURE_STAT

Used for configuring the Falcon's DMA engine.

FALCON_DMATRFBASE

Takes the host's base address for transferring data to/from the Falcon (DMA).

FALCON_DMATRFMOFFS

Takes the offset for the host's source memory being transferred.

FALCON_DMATRFCMD

Bits Description
0 FALCON_DMATRFCMD_FULL
1 FALCON_DMATRFCMD_IDLE (this is set if the engine is idle)
2-3 FALCON_DMATRFCMD_SEC
4 FALCON_DMATRFCMD_IMEM
5 FALCON_DMATRFCMD_WRITE
8-10 FALCON_DMATRFCMD_SIZE
12-14 FALCON_DMATRFCMD_CTXDMA

Used for configuring DMA transfers.

FALCON_DMATRFFBOFFS

Takes the offset for Falcon's target memory being transferred.

TSEC_SCP_CTL_STAT

Bits Description
20 TSEC_SCP_CTL_STAT_DEBUG_MODE

TSEC_SCP_CTL_PKEY

Bits Description
0 TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
1 TSEC_SCP_CTL_PKEY_LOADED

TSEC_DMA_CMD

Bits Description
0 TSEC_DMA_CMD_READ
1 TSEC_DMA_CMD_WRITE
4-7 TSEC_DMA_CMD_UNK
12 TSEC_DMA_CMD_BUSY
31 TSEC_DMA_CMD_INIT

A DMA read/write operation requires bits TSEC_DMA_CMD_INIT and TSEC_DMA_CMD_READ/TSEC_DMA_CMD_WRITE to be set in TSEC_DMA_CMD.

During the transfer, the TSEC_DMA_CMD_BUSY bit is set.

TSEC_DMA_ADDR

Takes the address for DMA transfers between TSEC and HOST1X (master and clients).

TSEC_DMA_VAL

Takes the value for DMA transfers between TSEC and HOST1X (master and clients).

TSEC_DMA_UNK

Always 0xFFF.

TSEC_TEGRA_CTL

Bits Description
16 TSEC_TEGRA_CTL_TKFI_KFUSE
17 TSEC_TEGRA_CTL_TKFI_RESTART_FSM_KFUSE
24 TSEC_TEGRA_CTL_TMPI_FORCE_IDLE_INPUTS_I2C
25 TSEC_TEGRA_CTL_TMPI_RESTART_FSM_HOST1X
26 TSEC_TEGRA_CTL_TMPI_RESTART_FSM_APB
27 TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C

Boot Process

TSEC is configured and initialized by the first bootloader during key generation (sub_400114FC).

Initialization

During this stage several clocks are programmed.

// Program the HOST1X clock and resets
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
enable_host1x_clkrst();

// Program the TSEC clock and resets
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
enable_tsec_clkrst();

// Program the SOR_SAFE clock and resets
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
enable_sor_safe_clkrst();

// Program the SOR0 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
enable_sor0_clkrst();

// Program the SOR1 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
enable_sor1_clkrst();

// Program the KFUSE clock resets
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
enable_kfuse_clkrst();

Configuration

In this stage the Falcon IRQs, interfaces and DMA engine are configured.

// Clear the Falcon DMA control register
*(u32 *)FALCON_DMACTL = 0;

// Enable Falcon IRQs
*(u32 *)FALCON_IRQMSET = 0xFFF2;

// Enable Falcon IRQs
*(u32 *)FALCON_IRQDEST = 0xFFF0;

// Enable Falcon interfaces
*(u32 *)FALCON_ITFEN = 0x03;

// Wait for Falcon's DMA engine to be idle
wait_flcn_dma_idle();

Firmware loading

The Falcon firmware code is stored in the first bootloader's data segment in IMEM.

// Set DMA transfer base address to 0x40011900 >> 0x08
*(u32 *)FALCON_DMATRFBASE = 0x400119;

u32 trf_mode = 0;     // A value of 0 sets FALCON_DMATRFCMD_IMEM
u32 dst_offset = 0;
u32 src_offset = 0;

// Load code into Falcon (0x100 bytes at a time)
while (src_offset < 0xF00)
{
   flcn_load_firm(trf_mode, src_offset, dst_offset);
   src_offset += 0x100;
   dst_offset += 0x100;
}

Firmware booting

Falcon is booted up and the first bootloader waits for it to finish.

// Set something in unknown host1x channel 0 sync register (HOST1X_SYNC_UNK_300)
// This appears to grant TSEC exclusive access to host1x
*(u32 *)0x50003300 = 0x34C2E1DA;

// Clear Falcon scratch1 MMIO
*(u32 *)FALCON_SCRATCH1 = 0;

// Set Falcon boot key version in scratch0 MMIO
*(u32 *)FALCON_SCRATCH0 = 0x01;

// Set Falcon's boot vector address
*(u32 *)FALCON_BOOTVEC = 0;

// Signal Falcon's CPU
*(u32 *)FALCON_CPUCTL = 0x02;

// Wait for Falcon's DMA engine to be idle
wait_flcn_dma_idle();

u32 boot_res = 0;

// The bootloader allows the TSEC two seconds from this point to do its job
u32 maximum_time = read_timer() + 2000000; 

while (!boot_res)
{
   // Read boot result from scratch1 MMIO
   boot_res = *(u32 *)FALCON_SCRATCH1;
   
   // Read from TIMERUS_CNTR_1US (microseconds from boot)
   u32 current_time = read_timer();
   
   // Booting is taking too long
   if (current_time > maximum_time)
      panic();
}

// Invalid boot result was returned
if (boot_res != 0xB0B0B0B0)
   panic();

Device key generation

The TSEC device key is generated by reading SOR1 registers modified by the Falcon CPU.

// Clear something in unknown host1x channel 0 sync register (HOST1X_SYNC_UNK_300)
// This appears to revoke TSEC's exclusive access to host1x
*(u32 *)0x50003300 = 0;

// Read TSEC device key
u32 tsec_device_key[4]; 
tsec_device_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB;
tsec_device_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB;
tsec_device_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB;
tsec_device_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB;

// Clear SOR1 registers
*(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0;
*(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0;
*(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0;
*(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0;

if (out_size < 0x10)
   out_size = 0x10;

// Copy back the TSEC device key
memcpy(out_buf, tsec_device_key, out_size);

Cleanup

Clocks and resets are disabled before returning.

// Deprogram KFUSE clock and resets
// Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
disable_kfuse_clkrst();

// Deprogram SOR1 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
disable_sor1_clkrst();

// Deprogram SOR0 clock and resets
// Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
disable_sor0_clkrst();

// Deprogram SOR_SAFE clock and resets
// Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
disable_sor_safe_clkrst();

// Deprogram TSEC clock and resets
// Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
disable_tsec_clkrst();

// Deprogram HOST1X clock and resets
// Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
disable_host1x_clkrst();

return;

TSEC Firmware

The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs: Stage0, Stage1, Stage2 and key data.

Firmware can be disassembled with envytools' envydis:

envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt

Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.

Stage 0

During this stage key data is loaded and Stage 1 is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader.

Initialization

Falcon sets up it's own stack pointer.

// Read data segment size from IO space
u32 data_seg_size = *(u32 *)UC_CAPS;
data_seg_size >>= 0x09;
data_seg_size &= 0x1FF;
data_seg_size <<= 0x08;

// Set the stack pointer
*(u32 *)sp = data_seg_size;

Stage 1 loading

u32 boot_base_addr = 0;
u32 key_data_buf[0x7C];

// Read the key data from memory
u32 key_data_addr = 0x300;
u32 key_data_size = 0x7C;
read_code(key_data_buf, key_data_addr, key_data_size);

// Read the next code segment into boot base
u32 blob1_addr = 0x400;
u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
read_code(boot_base_addr, blob1_addr, blob1_size);

// Upload the next code segment into Falcon's CODE region
u32 blob1_virt_addr = 0x300;
bool use_secret = true;
upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);

u32 boot_res = 0;
bool is_done = false;
u32 time = 0;
bool is_blob_dec = false;

while (!is_done)
{
   if (time > 4000000)
   {
      // Write boot failed (timeout) magic to FALCON_SCRATCH1
      boot_res = 0xC0C0C0C0;
      *(u32 *)FALCON_SCRATCH1 = boot_res;
      
      break;
   }
   
   // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01)
   u32 key_version = *(u32 *)FALCON_SCRATCH0;

   if (key_version == 0x64)
   {
      // Skip all next stages
      boot_res = 0xB0B0B0B0;
      *(u32 *)FALCON_SCRATCH1 = boot_res;
      
      break;
   }
   else
   {
      if (key_version > 0x03)
         boot_res = 0xD0D0D0D0;    // Invalid key version
      else if (key_version == 0)
         boot_res = 0xB0B0B0B0;    // No keys used
      else
      {
         u32 key_buf[0x7C];
         
         // Copy key data
         memcpy(key_buf, key_data_buf, 0x7C);

         u32 crypt_reg_flag = 0x00060000;
         u32 blob1_hash_addr = key_buf + 0x20; 

         // fuc5 crypt cauth instruction
         // Set auth_addr to 0x300 and auth_size to blob1_size
         cauth((blob1_size << 0x10) | (0x300 >> 0x08));

         // fuc5 crypt cxset instruction
         // The next 2 xfer instructions will be overridden
         // and target changes from DMA to crypto
         cxset(0x02);
         
         // Transfer data to crypto register c6
	 xdst(0, (blob1_hash_addr | crypt_reg_flag));
	  			
	 // Wait for all data loads/stores to finish
	 xdwait();
         
         // Jump to Stage1
         u32 stage1_res = exec_stage1(key_buf, key_version, is_blob_dec);
         is_blob_dec = true;  // Set this to prevent decrypting again

         // Set boot finish magic on success
	  if (stage1_res == 0)
            boot_res = 0xB0B0B0B0
      }
      
      // Write result to FALCON_SCRATCH1
      *(u32 *)FALCON_SCRATCH1 = boot_res;

      if (boot_res == 0xB0B0B0B0)
         is_done = true;
   }

   time++;
}

// Write TSEC device key to registers
set_device_key(key_data_buf);

return boot_res;

set_device_key

This method takes key_data_buf as argument and writes the TSEC key to SOR1 registers.

// This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40)
*(u32 *)TSEC_DMA_UNK = 0xFFF;

// Read the key's words
u32 key0 = *(u32 *)(key_data_buf + 0x00);
u32 key1 = *(u32 *)(key_data_buf + 0x04);
u32 key2 = *(u32 *)(key_data_buf + 0x08);
u32 key3 = *(u32 *)(key_data_buf + 0x0C);

u32 result = 0;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0);

// Failed to write
if (result)
   return result;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1);

// Failed to write
if (result)
   return result;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2);

// Failed to write
if (result)
   return result;

// Write to SOR1 register
result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3);

// Failed to write
if (result)
   return result;

return result;
tsec_dma_write

This method takes addr and value as arguments and performs a DMA write using TSEC MMIO.

u32 result = 0;

// Wait for TSEC DMA engine
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
result = wait_tsec_dma();

// Wait failed
if (result)
   return 1;

// Set the destination address
// This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40)
*(u32 *)TSEC_DMA_ADDR = addr;

// Set the value
// This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40)
*(u32 *)TSEC_DMA_VAL = value;

// Start transfer?
// This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40)
*(u32 *)TSEC_DMA_CMD = 0x800000F2;

// Wait for TSEC DMA engine
// This waits for bit 0x0C in TSEC_DMA_CMD to be 0
result = wait_tsec_dma();

// Wait failed
if (result)
   return 1;

return 0;

Stage 1

This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Stage 2.

Crypto setup

// Clear interrupt flags
*(u8 *)flags_ie0 = 0;
*(u8 *)flags_ie1 = 0;
*(u8 *)flags_ie2 = 0;

// fuc5 crypt cxset instruction
// Clear overrides?
cxset(0x80);

// fuc5 crypt cauth instruction
// Clear bit 0x13 in cauth
cauth(cauth_old & ~(1 << 0x13));

// Set the target port for memory transfers
xtargets(0);

// Wait for all data loads/stores to finish
xdwait();

// Wait for all code loads to finish
xcwait();

// fuc5 crypt cxset instruction
// The next 2 xfer instructions will be overridden
// and target changes from DMA to crypto
cxset(0x02);

// Transfer data to crypto register c0
// This should clear any leftover data
xdst(0, 0);

// Wait for all data loads/stores to finish
xdwait();

// Clear all crypto registers, except c6 which is used for auth
cxor(c0, c0);
cmov(c1, c0);
cmov(c2, c0);
cmov(c3, c0);
cmov(c4, c0);
cmov(c5, c0);
cmov(c7, c0);

// Clear TSEC_TEGRA_CTL_TKFI_KFUSE
// This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40)
*(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF;

// Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
// This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40)
*(u32 *)TSEC_SCP_CTL_PKEY |= 0x01;

u32 is_pkey_loaded = 0;

// Wait for TSEC_SCP_CTL_PKEY_LOADED
while (!is_pkey_loaded)
   is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02);

// Read data segment size from IO space
u32 data_seg_size = *(u32 *)UC_CAPS;
data_seg_size >>= 0x09;
data_seg_size &= 0x1FF;
data_seg_size <<= 0x08;

// Check stack bounds
if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800))
  return;

// Decrypt and load Stage2
load_stage2(key_buf, key_version, is_blob_dec);

// Partially unknown fuc5 instruction
// Likely forces a change of permissions
cchmod(c0, c0);

// Clear all crypto registers and propagate permissions
cxor(c0, c0);
cxor(c1, c1);
cxor(c2, c2);
cxor(c3, c3);
cxor(c4, c4);
cxor(c5, c5);
cxor(c6, c6);
cxor(c7, c7);

// Exit Authenticated Mode
// This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40)
*(u32 *)TSEC_SCP_CTL_AUTH_MODE = 0;

return;

Stage 2 loading

u32 res = 0;

u32 boot_base_addr = 0;
u32 blob0_addr = 0;
u32 blob0_size = *(u32 *)(key_buf + 0x70); 

// Load blob0 code again
read_code(boot_base_addr, blob0_addr, blob0_size);

// Generate "CODE_SIG_01" key into c4 crypto register
keygen(0, 0);

// Encrypt buffer with c4
u32 sig_key[0x10];
enc_buf(sig_key, blob0_size);

u32 src_addr = boot_base_addr;
u32 src_size = blob0_size;
u32 iv_addr = sig_key;
u32 dst_addr = sig_key;
u32 mode = 0x02;   // AES-CMAC
u32 version = 0;

// Do AES-CMAC over blob0 code
do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version);

// Compare the hashes
if (memcmp(dst_addr, key_buf + 0x10, 0x10))
{
  res = 0xDEADBEEF;
  return res;
}

u32 blob1_size = *(u32 *)(key_buf + 0x74);

// Decrypt Stage2 blob if needed
if (!is_blob_dec)
{
   // Read Stage2's size from key buffer
   u32 blob2_size = *(u32 *)(key_buf + 0x78);

   // Check stack bounds
   if (*(u32 *)sp > blob2_size)
   {
      u32 boot_base_addr = 0;
      u32 blob2_virt_addr = blob0_size + blob1_size;
      u32 blob2_addr = blob2_virt_addr + 0x100;
      
      // Read Stage2's encrypted blob
      read_code(boot_base_addr, blob2_addr, blob2_size);

      // Generate "CODE_ENC_01" key into c4 crypt register
      keygen(0x01, 0x01);
      
      u32 src_addr = boot_base_addr;
      u32 src_size = blob2_size;
      u32 iv_addr = key_buf + 0x40;
      u32 dst_addr = boot_base_addr;
      u32 mode = 0;   // AES-128-ECB
      u32 version = 0;
      
      // Decrypt Stage2
      do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version);
      
      // Upload the next code segment into Falcon's CODE region
      bool use_secret = true;
      upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret);

      // Clear out the decrypted blob
      memset(boot_base_addr, 0, blob2_size);
   }
}

// fuc5 crypt cxset instruction
// The next 2 xfer instructions will be overridden
// and target changes from DMA to crypto
cxset(0x02);

u32 crypt_reg_flag = 0x00060000;
u32 blob2_hash_addr = key_buf + 0x30;

// Transfer data to crypto register c6
xdst(0, (blob2_hash_addr | crypt_reg_flag));
				
// Wait for all data loads/stores to finish
xdwait();

// Save previous cauth value
u32 c_old = cauth_old;

// fuc5 crypt cauth instruction
// Set auth_addr to blob2_virt_addr and auth_size to blob2_size
cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10));

u32 hovi_key_addr = 0;

// Select next stage key
if (key_version == 0x01)		// Use HOVI_EKS_01
  hovi_key_addr = key_buf + 0x50;
else if (key_version == 0x02)	        // Use HOVI_COMMON_01
  hovi_key_addr = key_buf + 0x60;
else if (key_version == 0x03)	        // Use empty key
  hovi_key_addr = key_buf + 0x00;
else
  res = 0xD0D0D0D0
	
// Jump to Stage2
if (hovi_key_addr)
  res = exec_stage2(hovi_key_addr, key_version);
         
// Clear out key data
memset(key_buf, 0, 0x7C);

// fuc5 crypt cauth instruction
// Restore previous cauth value
cauth(c_old);

return res;

keygen

This method takes type and mode as arguments and generates a key.

u32 seed_buf[0x10];

// Read a 16 bytes seed based on supplied type
/*
   Type 0: "CODE_SIG_01" + null padding
   Type 1: "CODE_ENC_01" + null padding
*/
get_seed(seed_buf, type);

// This will write the seed into crypto register c0 
crypt_store(0, seed_buf);

// fuc5 csecret instruction
// Load selected secret into crypto register c1
csecret(c1, 0x26);

// fuc5 ckeyreg instruction
// Bind c1 register as the key for enc/dec operations
ckeyreg(c1);

// fuc5 cenc instruction
// Encrypt seed_buf (in c0) using keyreg value as key into c1
cenc(c1, c0);

// fuc5 csigenc instruction
// Encrypt c1 register with the auth signature stored in c6
csigenc(c1, c1);

// Copy the result into c4 (will be used as key)
cmov(c4, c1);

// Do key expansion (for decryption)
if (mode != 0)
   ckexp(c4, c4);		// fuc5 ckexp instruction

return;

enc_buffer

This method takes buf (a 16 bytes buffer) and size as arguments and encrypts the supplied buffer.

// Set first 3 words to null
*(u32 *)(buf + 0x00) = 0;
*(u32 *)(buf + 0x04) = 0;
*(u32 *)(buf + 0x08) = 0;

// Swap halves (b16, b32 and b16 again)
hswap(size);

// Store the size as the last word
*(u32 *)(buf + 0x0C) = size;

// This will write buf into crypto register c3 
crypt_store(0x03, buf);

// fuc5 ckeyreg instruction
// Bind c4 register (from keygen) as the key for enc/dec operations
ckeyreg(c4);

// fuc5 cenc instruction
// Encrypt buf (in c3) using keyreg value as key into c5
cenc(c5, c3);

// This will read into buf from crypto register c5 
crypt_load(0x05, buf);

return;

do_crypto

This is the method responsible for all crypto operations performed during Stage 1. It takes src_addr, src_size, iv_addr, dst_addr, mode and crypt_ver as arguments.

// Check for invalid source data size
if (!src_size || (src_size & 0x0F))
  exit();

// Check for invalid source data address
if (src_addr & 0x0F)
  exit();

// Check for invalid destination data address
if (dst_addr & 0x0F)
  exit();

// Use IV if available
if (iv_addr)
{
  // This will write the iv_addr into crypto register c5 
  crypt_store(0x05, iv_addr);
}
else
{
  // Clear c5 register (use null IV)
  cxor(c5, c5);
}

// Use key in c4
ckeyreg(c4);

// AES-128-ECB decrypt
if (mode == 0x00)
{
  // Create crypto script with 5 instructions
  cs0begin(0x05);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cdec(c2, c3);                // Decrypt from c3 into c2
  cxor(c5, c2);                // XOR c2 with c5 and store in c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
  cmov(c5, c3);                // Move c3 into c5
}
else if (mode == 0x01)		// AES-128-ECB encrypt
{
  // Create crypto script with 4 instructions
  cs0begin(0x04);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cxor(c3, c5);                // XOR c5 with c3 and store in c3
  cenc(c5, c3);                // Encrypt from c3 into c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
}
else if (mode == 0x02)		// AES-CMAC
{
  // Create crypto script with 3 instructions
  cs0begin(0x03);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cxor(c5, c3);                // XOR c5 with c3 and store in c3
  cenc(c5, c5);                // Encrypt from c5 into c5
}
else if (mode == 0x03)		// AES-128-ECB decrypt (no IV)
{
  // Create crypto script with 3 instructions
  cs0begin(0x03);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cdec(c5, c3);                // Decrypt from c3 into c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
}
else if (mode == 0x04)		// AES-128-ECB encrypt (no IV)
{
  // Create crypto script with 3 instructions
  cs0begin(0x03);
	
  cxsin(c3);                   // Read 0x10 bytes from crypto stream into c3
  cenc(c5, c3);                // Encrypt from c3 into c5
  cxsout(c5);                  // Write 0x10 bytes into crypto stream from c5
}
else
  return;

// Main loop
while (src_size > 0)
{
  u32 blk_count = (src_size >> 0x04);
	
  if (blk_count > 0x10)
    blk_count = 0x10;
  
  // Check size align
  if (blk_count & (blk_count - 0x01))
    blk_count = 0x01;

  u32 blk_size = (blk_count << 0x04);
  
  u32 crypt_xfer_src = 0;
  u32 crypt_xfer_dst = 0;
  
  if (block_size == 0x20)
  {
     crypt_xfer_src = (0x00030000 | src_addr);
     crypt_xfer_dst = (0x00030000 | dst_addr);
     
     // Execute crypto script 2 times (1 for each block)
     cs0exec(0x02);
  }
  if (block_size == 0x40)
  {
     crypt_xfer_src = (0x00040000 | src_addr);
     crypt_xfer_dst = (0x00040000 | dst_addr);
     
     // Execute crypto script 4 times (1 for each block)
     cs0exec(0x04);
  }
  if (block_size == 0x80)
  {
     crypt_xfer_src = (0x00050000 | src_addr);
     crypt_xfer_dst = (0x00050000 | dst_addr);
     
     // Execute crypto script 8 times (1 for each block)
     cs0exec(0x08);
  }
  if (block_size == 0x100)
  {
     crypt_xfer_src = (0x00060000 | src_addr);
     crypt_xfer_dst = (0x00060000 | dst_addr);
     
     // Execute crypto script 16 times (1 for each block)
     cs0exec(0x10);
  }
  else
  {
     crypt_xfer_src = (0x00020000 | src_addr);
     crypt_xfer_dst = (0x00020000 | dst_addr);
     
     // Execute crypto script 1 time (1 for each block)
     cs0exec(0x01);

     // Ensure proper block size
     block_size = 0x10;
  }

  // fuc5 crypt cxset instruction
  // The next xfer instruction will be overridden
  // and target changes from DMA to crypto input/output stream
  if (crypt_ver == 0x01)
    cxset(0xA1);         // Flag 0xA0 is (0x80 | 0x20)
  else
    cxset(0x21);         // Flag 0x20 is external mem <-> crypto input/output stream

  // Transfer data into the crypto input/output stream
  xdst(crypt_xfer_src, crypt_xfer_src);
  
  // AES-CMAC only needs one more xfer instruction
  if (mode == 0x02)
  {
     // fuc5 crypt cxset instruction
     // The next xfer instruction will be overridden
     // and target changes from DMA to crypto input/output stream
     if (crypt_ver == 0x01)
       cxset(0xA1);     // Flag 0xA0 is (0x80 | 0x20)
     else
       cxset(0x21);     // Flag 0x20 is external mem <-> crypto input/output stream
		
     // Wait for all data loads/stores to finish
     xdwait();
  }
  else  // AES enc/dec needs 2 more xfer instructions
  {
     // fuc5 crypt cxset instruction
     // The next 2 xfer instructions will be overridden
     // and target changes from DMA to crypto input/output stream
     if (crypt_ver == 0x01)
       cxset(0xA2);            // Flag 0xA0 is (0x80 | 0x20)
     else
       cxset(0x22);            // Flag 0x20 is external mem <-> crypto input/output stream

     // Transfer data from the crypto input/output stream
     xdld(crypt_xfer_dst, crypt_xfer_dst);
		
     // Wait for all data loads/stores to finish
     xdwait();

     // Increase the destination address by block size
     dst_addr += block_size;
  }
  
  // Increase the source address by block size
  src_addr += block_size;

  // Decrease the source size by block size
  src_size -= block_size;
}

// AES-CMAC result is in c5
if (mode == 0x02)
{
   // This will read into dst_addr from crypto register c5 
   crypt_load(0x05, dst_addr);
}

return;

Stage 2

This stage is decrypted by Stage 1 using a key generated by encrypting a seed with an hardware secret (see keygen).

Key data

Small buffer stored after Stage 0's code and used across all stages.

Offset Size Description
0x00 0x10 Empty
0x10 0x10 blob0 auth hash
0x20 0x10 blob1 auth hash
0x30 0x10 blob2 auth hash
0x40 0x10 blob2 AES IV
0x50 0x10 HOVI EKS seed
0x60 0x10 HOVI COMMON seed
0x70 0x04 blob0 size
0x74 0x04 blob1 size
0x78 0x04 blob2 size

Notes

mwk shared additional info learned from RE of falcon processors over the years, which hasn't made it into envytools documentation yet:

cxset

cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions.

for example: 000000de: f4 3c 02 cxset 0x2

can be read as: dma_override(type=crypto_reg, count=2)

The argument to cxset specifies the type of behavior change in the top 3 bits, and the number of DMA-related instructions the effect lasts for in the lower 5 bits.

Override Types

Unlisted values are unknown, but probably do something.

Value Effect
0b000 falcon data mem <-> falcon $cX register
0b001 external mem <-> crypto input/output stream
0b011 falcon data mem <-> crypto input/output stream
0b100 unknown, but can be combined with other types

DMA-Related Instructions

At least the following instructions may have changed behavior, and count against the cxset "count" argument: xdwait, xdst, xdld.

For example, if override type=0b000, then the "length" argument to xdst is instead treated as the index of the target $cX register.

Register ACLs

Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected).

Authenticated Mode Entry/Exit

Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check.

Exit from Authenticated Mode must poke a special register before leaving authenticated code pages and a failure to do this would result in the Falcon core halting. Every Falcon based unit (TSEC, NVDEC, VIC) must map this register in their engine-specific subset of registers. In TSEC's case, the register is TSEC_SCP_CTL_AUTH_MODE.

Unknown Instructions

00000000: f5 3c XY e0 cchmod $cY $cX - likely forces a change of permissions.

00000000: f5 3c XY a8 c_unk $cY $cX - unknown crypto operation.

00000000: f5 3c 0X 90 crng $cX - seems to initialize a crypto register with random data.