|
|
Line 1,736: |
Line 1,736: |
| | 27 | | | 27 |
| | TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C | | | TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C |
− | |}
| |
− |
| |
− | = Boot Process =
| |
− | TSEC is configured and initialized by the first bootloader during key generation.
| |
− |
| |
− | [6.2.0+] TSEC is now configured at the end of the first bootloader's main function.
| |
− |
| |
− | == Initialization ==
| |
− | During this stage several clocks are programmed.
| |
− | // Program the HOST1X clock and resets
| |
− | // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
| |
− | enable_host1x_clkrst();
| |
− |
| |
− | // Program the TSEC clock and resets
| |
− | // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
| |
− | enable_tsec_clkrst();
| |
− |
| |
− | // Program the SOR_SAFE clock and resets
| |
− | // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
| |
− | enable_sor_safe_clkrst();
| |
− |
| |
− | // Program the SOR0 clock and resets
| |
− | // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
| |
− | enable_sor0_clkrst();
| |
− |
| |
− | // Program the SOR1 clock and resets
| |
− | // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
| |
− | enable_sor1_clkrst();
| |
− |
| |
− | // Program the KFUSE clock resets
| |
− | // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
| |
− | enable_kfuse_clkrst();
| |
− |
| |
− | == Configuration ==
| |
− | In this stage the Falcon IRQs, interfaces and DMA engine are configured.
| |
− | // Clear the Falcon DMA control register
| |
− | *(u32 *)FALCON_DMACTL = 0;
| |
− |
| |
− | // Enable Falcon IRQs
| |
− | *(u32 *)FALCON_IRQMSET = 0xFFF2;
| |
− |
| |
− | // Enable Falcon IRQs
| |
− | *(u32 *)FALCON_IRQDEST = 0xFFF0;
| |
− |
| |
− | // Enable Falcon interfaces
| |
− | *(u32 *)FALCON_ITFEN = 0x03;
| |
− |
| |
− | // Wait for Falcon's DMA engine to be idle
| |
− | wait_flcn_dma_idle();
| |
− |
| |
− | == Firmware loading ==
| |
− | The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
| |
− | // Set DMA transfer base address to 0x40011900 >> 0x08
| |
− | *(u32 *)FALCON_DMATRFBASE = 0x400119;
| |
− |
| |
− | u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM
| |
− | u32 dst_offset = 0;
| |
− | u32 src_offset = 0;
| |
− |
| |
− | // Load code into Falcon (0x100 bytes at a time)
| |
− | while (src_offset < 0xF00)
| |
− | {
| |
− | flcn_load_firm(trf_mode, src_offset, dst_offset);
| |
− | src_offset += 0x100;
| |
− | dst_offset += 0x100;
| |
− | }
| |
− |
| |
− | [6.2.0+] The transfer base address and size of the Falcon firmware code changed.
| |
− | // Set DMA transfer base address to 0x40010E00 >> 0x08
| |
− | *(u32 *)FALCON_DMATRFBASE = 0x40010E;
| |
− |
| |
− | u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM
| |
− | u32 dst_offset = 0;
| |
− | u32 src_offset = 0;
| |
− |
| |
− | // Load code into Falcon (0x100 bytes at a time)
| |
− | while (src_offset < 0x2900)
| |
− | {
| |
− | flcn_load_firm(trf_mode, src_offset, dst_offset);
| |
− | src_offset += 0x100;
| |
− | dst_offset += 0x100;
| |
− | }
| |
− |
| |
− | == Firmware booting ==
| |
− | Falcon is booted up and the first bootloader waits for it to finish.
| |
− | // Set magic value in host1x scratch space
| |
− | *(u32 *)0x50003300 = 0x34C2E1DA;
| |
− |
| |
− | // Clear Falcon scratch1 MMIO
| |
− | *(u32 *)FALCON_SCRATCH1 = 0;
| |
− |
| |
− | // Set Falcon boot key version in scratch0 MMIO
| |
− | *(u32 *)FALCON_SCRATCH0 = 0x01;
| |
− |
| |
− | // Set Falcon's boot vector address
| |
− | *(u32 *)FALCON_BOOTVEC = 0;
| |
− |
| |
− | // Signal Falcon's CPU
| |
− | *(u32 *)FALCON_CPUCTL = 0x02;
| |
− |
| |
− | // Wait for Falcon's DMA engine to be idle
| |
− | wait_flcn_dma_idle();
| |
− |
| |
− | u32 boot_res = 0;
| |
− |
| |
− | // The bootloader allows the TSEC two seconds from this point to do its job
| |
− | u32 maximum_time = read_timer() + 2000000;
| |
− |
| |
− | while (!boot_res)
| |
− | {
| |
− | // Read boot result from scratch1 MMIO
| |
− | boot_res = *(u32 *)FALCON_SCRATCH1;
| |
− |
| |
− | // Read from TIMERUS_CNTR_1US (microseconds from boot)
| |
− | u32 current_time = read_timer();
| |
− |
| |
− | // Booting is taking too long
| |
− | if (current_time > maximum_time)
| |
− | panic();
| |
− | }
| |
− |
| |
− | // Invalid boot result was returned
| |
− | if (boot_res != 0xB0B0B0B0)
| |
− | panic();
| |
− |
| |
− | [6.2.0+] Falcon is booted up, but the first bootloader is left in an infinite loop.
| |
− | // Set magic value in host1x scratch space
| |
− | *(u32 *)0x50003300 = 0x34C2E1DA;
| |
− |
| |
− | // Clear Falcon scratch1 MMIO
| |
− | *(u32 *)FALCON_SCRATCH1 = 0;
| |
− |
| |
− | // Set Falcon boot key version in scratch0 MMIO
| |
− | *(u32 *)FALCON_SCRATCH0 = 0x01;
| |
− |
| |
− | // Set Falcon's boot vector address
| |
− | *(u32 *)FALCON_BOOTVEC = 0;
| |
− |
| |
− | // Signal Falcon's CPU
| |
− | *(u32 *)FALCON_CPUCTL = 0x02;
| |
− |
| |
− | // Infinite loop
| |
− | deadlock();
| |
− |
| |
− | == TSEC key generation ==
| |
− | The TSEC key is generated by reading SOR1 registers modified by the Falcon CPU.
| |
− | // Clear magic value in host1x scratch space
| |
− | *(u32 *)0x50003300 = 0;
| |
− |
| |
− | // Read TSEC key
| |
− | u32 tsec_key[4];
| |
− | tsec_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB;
| |
− | tsec_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB;
| |
− | tsec_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB;
| |
− | tsec_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB;
| |
− |
| |
− | // Clear SOR1 registers
| |
− | *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0;
| |
− | *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0;
| |
− | *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0;
| |
− | *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0;
| |
− |
| |
− | if (out_size < 0x10)
| |
− | out_size = 0x10;
| |
− |
| |
− | // Copy back the TSEC key
| |
− | memcpy(out_buf, tsec_key, out_size);
| |
− |
| |
− | [6.2.0+] This is now done inside an encrypted TSEC payload.
| |
− |
| |
− | == Cleanup ==
| |
− | Clocks and resets are disabled before returning.
| |
− | // Deprogram KFUSE clock and resets
| |
− | // Uses RST_DEVICES_H, CLK_OUT_ENB_H and CLK_H_KFUSE
| |
− | disable_kfuse_clkrst();
| |
− |
| |
− | // Deprogram SOR1 clock and resets
| |
− | // Uses RST_DEVICES_X, CLK_OUT_ENB_X, CLK_SOURCE_SOR1 and CLK_X_SOR1
| |
− | disable_sor1_clkrst();
| |
− |
| |
− | // Deprogram SOR0 clock and resets
| |
− | // Uses RST_DEVICES_X, CLK_OUT_ENB_X and CLK_X_SOR0
| |
− | disable_sor0_clkrst();
| |
− |
| |
− | // Deprogram SOR_SAFE clock and resets
| |
− | // Uses RST_DEVICES_Y, CLK_OUT_ENB_Y and CLK_Y_SOR_SAFE
| |
− | disable_sor_safe_clkrst();
| |
− |
| |
− | // Deprogram TSEC clock and resets
| |
− | // Uses RST_DEVICES_U, CLK_OUT_ENB_U, CLK_SOURCE_TSEC and CLK_U_TSEC
| |
− | disable_tsec_clkrst();
| |
− |
| |
− | // Deprogram HOST1X clock and resets
| |
− | // Uses RST_DEVICES_L, CLK_OUT_ENB_L, CLK_SOURCE_HOST1X and CLK_L_HOST1X
| |
− | disable_host1x_clkrst();
| |
− |
| |
− | return;
| |
− |
| |
− | = TSEC Firmware =
| |
− | The actual code loaded into TSEC is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions.
| |
− | Stored inside the first bootloader, this firmware binary is split into 4 blobs (names are unofficial): [[#Boot|Boot]] (unencrypted and unauthenticated code), [[#KeygenLdr|KeygenLdr]] (unencrypted and authenticated code), [[#Keygen|Keygen]] (encrypted and authenticated code) and [[#Key data|key data]].
| |
− |
| |
− | [6.2.0+] There are now 6 blobs (names are unofficial): [[#Boot|Boot]] (unencrypted and unauthenticated code), [[#Loader|Loader]] (unencrypted and unauthenticated code), [[#KeygenLdr|KeygenLdr]] (unencrypted and authenticated code), [[#Keygen|Keygen]] (encrypted and authenticated code), [[#Payload|Payload]] (part unencrypted and unauthenticated code, part encrypted and authenticated code) and [[#Key data|key data]].
| |
− |
| |
− | Firmware can be disassembled with [http://envytools.readthedocs.io/en/latest/ envytools'] [https://github.com/envytools/envytools/tree/master/envydis envydis]:
| |
− |
| |
− | <code>envydis -i tsec_fw.bin -m falcon -V fuc5 -F crypt</code>
| |
− |
| |
− | Note that the instruction set has variable length instructions, and the disassembler is not very good at detecting locations it should start disassembling from. One needs to disassemble multiple sub-regions and join them together.
| |
− |
| |
− | == Boot ==
| |
− | During this stage, [[#Key data|key data]] is loaded and [[#KeygenLdr|KeygenLdr]] is authenticated, loaded and executed.
| |
− | Before returning, this stage writes back to the host (using MMIO registers) and sets the key used by the first bootloader.
| |
− |
| |
− | [6.2.0+] During this stage, [[#Key data|key data]] is loaded and execution jumps to [[#Loader|Loader]].
| |
− |
| |
− | === Initialization ===
| |
− | Falcon sets up it's own stack pointer.
| |
− | // Read data segment size from IO space
| |
− | u32 data_seg_size = *(u32 *)UC_CAPS;
| |
− | data_seg_size >>= 0x09;
| |
− | data_seg_size &= 0x1FF;
| |
− | data_seg_size <<= 0x08;
| |
− |
| |
− | // Set the stack pointer
| |
− | *(u32 *)sp = data_seg_size;
| |
− |
| |
− | === Main ===
| |
− | Falcon reads the [[#Key data|key data]] and then authenticates, loads and executes [[#KeygenLdr|KeygenLdr]] which sets the TSEC key.
| |
− | u32 boot_base_addr = 0;
| |
− | u8 key_data_buf[0x7C];
| |
− |
| |
− | // Read the key data from memory
| |
− | u32 key_data_addr = 0x300;
| |
− | u32 key_data_size = 0x7C;
| |
− | read_code(key_data_buf, key_data_addr, key_data_size);
| |
− |
| |
− | // Read the next code segment into boot base
| |
− | u32 blob1_addr = 0x400;
| |
− | u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | read_code(boot_base_addr, blob1_addr, blob1_size);
| |
− |
| |
− | // Upload the next code segment into Falcon's CODE region
| |
− | u32 blob1_virt_addr = 0x300;
| |
− | bool use_secret = true;
| |
− | upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
| |
− |
| |
− | u32 boot_res = 0;
| |
− | bool is_done = false;
| |
− | u32 time = 0;
| |
− | bool is_blob_dec = false;
| |
− |
| |
− | while (!is_done)
| |
− | {
| |
− | if (time > 4000000)
| |
− | {
| |
− | // Write boot failed (timeout) magic to FALCON_SCRATCH1
| |
− | boot_res = 0xC0C0C0C0;
| |
− | *(u32 *)FALCON_SCRATCH1 = boot_res;
| |
− |
| |
− | break;
| |
− | }
| |
− |
| |
− | // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01)
| |
− | u32 key_version = *(u32 *)FALCON_SCRATCH0;
| |
− |
| |
− | if (key_version == 0x64)
| |
− | {
| |
− | // Skip all next stages
| |
− | boot_res = 0xB0B0B0B0;
| |
− | *(u32 *)FALCON_SCRATCH1 = boot_res;
| |
− |
| |
− | break;
| |
− | }
| |
− | else
| |
− | {
| |
− | if (key_version > 0x03)
| |
− | boot_res = 0xD0D0D0D0; // Invalid key version
| |
− | else if (key_version == 0)
| |
− | boot_res = 0xB0B0B0B0; // No keys used
| |
− | else
| |
− | {
| |
− | u32 key_buf[0x7C];
| |
− |
| |
− | // Copy key data
| |
− | memcpy(key_buf, key_data_buf, 0x7C);
| |
− |
| |
− | u32 crypt_reg_flag = 0x00060000;
| |
− | u32 blob1_hash_addr = key_buf + 0x20;
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Set auth_addr to 0x300 and auth_size to blob1_size
| |
− | cauth((blob1_size << 0x10) | (0x300 >> 0x08));
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next 2 xfer instructions will be overridden
| |
− | // and target changes from DMA to crypto
| |
− | cxset(0x02);
| |
− |
| |
− | // Transfer data to crypto register c6
| |
− | xdst(0, (blob1_hash_addr | crypt_reg_flag));
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | // Jump to KeygenLdr
| |
− | u32 keygenldr_res = exec_keygenldr(key_buf, key_version, is_blob_dec);
| |
− | is_blob_dec = true; // Set this to prevent decrypting again
| |
− |
| |
− | // Set boot finish magic on success
| |
− | if (keygenldr_res == 0)
| |
− | boot_res = 0xB0B0B0B0
| |
− | }
| |
− |
| |
− | // Write result to FALCON_SCRATCH1
| |
− | *(u32 *)FALCON_SCRATCH1 = boot_res;
| |
− |
| |
− | if (boot_res == 0xB0B0B0B0)
| |
− | is_done = true;
| |
− | }
| |
− |
| |
− | time++;
| |
− | }
| |
− |
| |
− | // Overwrite the TSEC key in SOR1 registers
| |
− | // This has no effect because the KeygenLdr locks out the TSEC DMA engine
| |
− | tsec_set_key(key_data_buf);
| |
− |
| |
− | return boot_res;
| |
− |
| |
− | [6.2.0+] Falcon reads the [[#Key data|key data]] and jumps to [[#Loader|Loader]].
| |
− | u8 key_data_buf[0x84];
| |
− |
| |
− | // Read the key data from memory
| |
− | u32 key_data_addr = 0x300;
| |
− | u32 key_data_size = 0x84;
| |
− | read_code(key_data_buf, key_data_addr, key_data_size);
| |
− |
| |
− | // Calculate the next blob's address
| |
− | u32 blob4_size = *(u32 *)(key_data_buf + 0x80);
| |
− | u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
| |
− | u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
| |
− | u32 blob3_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + blob4_size);
| |
− |
| |
− | // Jump to next blob
| |
− | (void *)blob3_addr();
| |
− |
| |
− | return 0;
| |
− |
| |
− | ==== tsec_set_key ====
| |
− | This method takes '''key_data_buf''' (a 16 bytes buffer) as argument and writes its contents to SOR1 registers.
| |
− | // This is TSEC_MMIO + 0x1000 + (0x1C300 / 0x40)
| |
− | *(u32 *)TSEC_DMA_UNK = 0xFFF;
| |
− |
| |
− | // Read the key's words
| |
− | u32 key0 = *(u32 *)(key_data_buf + 0x00);
| |
− | u32 key1 = *(u32 *)(key_data_buf + 0x04);
| |
− | u32 key2 = *(u32 *)(key_data_buf + 0x08);
| |
− | u32 key3 = *(u32 *)(key_data_buf + 0x0C);
| |
− |
| |
− | u32 result = 0;
| |
− |
| |
− | // Write to SOR1 register
| |
− | result = tsec_dma_write(NV_SOR_DP_HDCP_BKSV_LSB, key0);
| |
− |
| |
− | // Failed to write
| |
− | if (result)
| |
− | return result;
| |
− |
| |
− | // Write to SOR1 register
| |
− | result = tsec_dma_write(NV_SOR_TMDS_HDCP_BKSV_LSB, key1);
| |
− |
| |
− | // Failed to write
| |
− | if (result)
| |
− | return result;
| |
− |
| |
− | // Write to SOR1 register
| |
− | result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_MSB, key2);
| |
− |
| |
− | // Failed to write
| |
− | if (result)
| |
− | return result;
| |
− |
| |
− | // Write to SOR1 register
| |
− | result = tsec_dma_write(NV_SOR_TMDS_HDCP_CN_LSB, key3);
| |
− |
| |
− | // Failed to write
| |
− | if (result)
| |
− | return result;
| |
− |
| |
− | return result;
| |
− |
| |
− | ===== tsec_dma_write =====
| |
− | This method takes '''addr''' and '''value''' as arguments and performs a DMA write using TSEC MMIO.
| |
− | u32 result = 0;
| |
− |
| |
− | // Wait for TSEC DMA engine
| |
− | // This waits for bit 0x0C in TSEC_DMA_CMD to be 0
| |
− | result = wait_tsec_dma();
| |
− |
| |
− | // Wait failed
| |
− | if (result)
| |
− | return 1;
| |
− |
| |
− | // Set the destination address
| |
− | // This is TSEC_MMIO + 0x1000 + (0x1C100 / 0x40)
| |
− | *(u32 *)TSEC_DMA_ADDR = addr;
| |
− |
| |
− | // Set the value
| |
− | // This is TSEC_MMIO + 0x1000 + (0x1C200 / 0x40)
| |
− | *(u32 *)TSEC_DMA_VAL = value;
| |
− |
| |
− | // Start transfer?
| |
− | // This is TSEC_MMIO + 0x1000 + (0x1C000 / 0x40)
| |
− | *(u32 *)TSEC_DMA_CMD = 0x800000F2;
| |
− |
| |
− | // Wait for TSEC DMA engine
| |
− | // This waits for bit 0x0C in TSEC_DMA_CMD to be 0
| |
− | result = wait_tsec_dma();
| |
− |
| |
− | // Wait failed
| |
− | if (result)
| |
− | return 1;
| |
− |
| |
− | return 0;
| |
− |
| |
− | == KeygenLdr ==
| |
− | This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing [[#Keygen|Keygen]].
| |
− |
| |
− | === Main ===
| |
− | // Clear interrupt flags
| |
− | *(u8 *)flags_ie0 = 0;
| |
− | *(u8 *)flags_ie1 = 0;
| |
− | *(u8 *)flags_ie2 = 0;
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // Clear overrides?
| |
− | cxset(0x80);
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Clear bit 0x13 in cauth
| |
− | cauth(cauth_old & ~(1 << 0x13));
| |
− |
| |
− | // Set the target port for memory transfers
| |
− | xtargets(0);
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | // Wait for all code loads to finish
| |
− | xcwait();
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next 2 xfer instructions will be overridden
| |
− | // and target changes from DMA to crypto
| |
− | cxset(0x02);
| |
− |
| |
− | // Transfer data to crypto register c0
| |
− | // This should clear any leftover data
| |
− | xdst(0, 0);
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | // Clear all crypto registers, except c6 which is used for auth
| |
− | cxor(c0, c0);
| |
− | cmov(c1, c0);
| |
− | cmov(c2, c0);
| |
− | cmov(c3, c0);
| |
− | cmov(c4, c0);
| |
− | cmov(c5, c0);
| |
− | cmov(c7, c0);
| |
− |
| |
− | // Clear TSEC_TEGRA_CTL_TKFI_KFUSE
| |
− | // This is TSEC_MMIO + 0x1000 + (0x20E00 / 0x40)
| |
− | *(u32 *)TSEC_TEGRA_CTL &= 0xEFFFF;
| |
− |
| |
− | // Set TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
| |
− | // This is TSEC_MMIO + 0x1000 + (0x10600 / 0x40)
| |
− | *(u32 *)TSEC_SCP_CTL_PKEY |= 0x01;
| |
− |
| |
− | u32 is_pkey_loaded = 0;
| |
− |
| |
− | // Wait for TSEC_SCP_CTL_PKEY_LOADED
| |
− | while (!is_pkey_loaded)
| |
− | is_pkey_loaded = (*(u32 *)TSEC_SCP_CTL_PKEY & 0x02);
| |
− |
| |
− | // Read data segment size from IO space
| |
− | u32 data_seg_size = *(u32 *)UC_CAPS;
| |
− | data_seg_size >>= 0x09;
| |
− | data_seg_size &= 0x1FF;
| |
− | data_seg_size <<= 0x08;
| |
− |
| |
− | // Check stack bounds
| |
− | if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800))
| |
− | exit();
| |
− |
| |
− | // Decrypt and load Keygen stage
| |
− | load_keygen(key_buf, key_version, is_blob_dec);
| |
− |
| |
− | // fuc5 crypt csigclr instruction
| |
− | // Clears the cauth signature
| |
− | csigclr();
| |
− |
| |
− | // Clear all crypto registers
| |
− | cxor(c0, c0);
| |
− | cxor(c1, c1);
| |
− | cxor(c2, c2);
| |
− | cxor(c3, c3);
| |
− | cxor(c4, c4);
| |
− | cxor(c5, c5);
| |
− | cxor(c6, c6);
| |
− | cxor(c7, c7);
| |
− |
| |
− | // Exit Authenticated Mode
| |
− | // This is TSEC_MMIO + 0x1000 + (0x10300 / 0x40)
| |
− | *(u32 *)TSEC_SCP_CTL_AUTH_MODE = 0;
| |
− |
| |
− | return;
| |
− |
| |
− | ==== load_keygen ====
| |
− | u32 res = 0;
| |
− |
| |
− | u32 boot_base_addr = 0;
| |
− | u32 blob0_addr = 0;
| |
− | u32 blob0_size = *(u32 *)(key_buf + 0x70);
| |
− |
| |
− | // Load blob0 code again
| |
− | read_code(boot_base_addr, blob0_addr, blob0_size);
| |
− |
| |
− | // Generate "CODE_SIG_01" key into c4 crypto register
| |
− | gen_usr_key(0, 0);
| |
− |
| |
− | // Encrypt buffer with c4
| |
− | u8 sig_key[0x10];
| |
− | enc_buf(sig_key, blob0_size);
| |
− |
| |
− | u32 src_addr = boot_base_addr;
| |
− | u32 src_size = blob0_size;
| |
− | u32 iv_addr = sig_key;
| |
− | u32 dst_addr = sig_key;
| |
− | u32 mode = 0x02; // AES-CMAC
| |
− | u32 version = 0;
| |
− |
| |
− | // Do AES-CMAC over blob0 code
| |
− | do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version);
| |
− |
| |
− | // Compare the hashes
| |
− | if (memcmp(dst_addr, key_buf + 0x10, 0x10))
| |
− | {
| |
− | res = 0xDEADBEEF;
| |
− | return res;
| |
− | }
| |
− |
| |
− | u32 blob1_size = *(u32 *)(key_buf + 0x74);
| |
− |
| |
− | // Decrypt Keygen blob if needed
| |
− | if (!is_blob_dec)
| |
− | {
| |
− | // Read Stage2's size from key buffer
| |
− | u32 blob2_size = *(u32 *)(key_buf + 0x78);
| |
− |
| |
− | // Check stack bounds
| |
− | if (*(u32 *)sp > blob2_size)
| |
− | {
| |
− | u32 boot_base_addr = 0;
| |
− | u32 blob2_virt_addr = blob0_size + blob1_size;
| |
− | u32 blob2_addr = blob2_virt_addr + 0x100;
| |
− |
| |
− | // Read Keygen encrypted blob
| |
− | read_code(boot_base_addr, blob2_addr, blob2_size);
| |
− |
| |
− | // Generate "CODE_ENC_01" key into c4 crypt register
| |
− | gen_usr_key(0x01, 0x01);
| |
− |
| |
− | u32 src_addr = boot_base_addr;
| |
− | u32 src_size = blob2_size;
| |
− | u32 iv_addr = key_buf + 0x40;
| |
− | u32 dst_addr = boot_base_addr;
| |
− | u32 mode = 0; // AES-128-ECB
| |
− | u32 version = 0;
| |
− |
| |
− | // Decrypt Keygen blob
| |
− | do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version);
| |
− |
| |
− | // Upload the next code segment into Falcon's CODE region
| |
− | bool use_secret = true;
| |
− | upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret);
| |
− |
| |
− | // Clear out the decrypted blob
| |
− | memset(boot_base_addr, 0, blob2_size);
| |
− | }
| |
− | }
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next 2 xfer instructions will be overridden
| |
− | // and target changes from DMA to crypto
| |
− | cxset(0x02);
| |
− |
| |
− | u32 crypt_reg_flag = 0x00060000;
| |
− | u32 blob2_hash_addr = key_buf + 0x30;
| |
− |
| |
− | // Transfer data to crypto register c6
| |
− | xdst(0, (blob2_hash_addr | crypt_reg_flag));
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | // Save previous cauth value
| |
− | u32 c_old = cauth_old;
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Set auth_addr to blob2_virt_addr and auth_size to blob2_size
| |
− | cauth((blob2_virt_addr >> 0x08) | (blob2_size << 0x10));
| |
− |
| |
− | u32 hovi_key_addr = 0;
| |
− |
| |
− | // Select next stage key
| |
− | if (key_version == 0x01) // Use HOVI_EKS_01
| |
− | hovi_key_addr = key_buf + 0x50;
| |
− | else if (key_version == 0x02) // Use HOVI_COMMON_01
| |
− | hovi_key_addr = key_buf + 0x60;
| |
− | else if (key_version == 0x03) // Use debug key (empty)
| |
− | hovi_key_addr = key_buf + 0x00;
| |
− | else
| |
− | res = 0xD0D0D0D0
| |
− |
| |
− | // Jump to Keygen
| |
− | if (hovi_key_addr)
| |
− | res = exec_keygen(hovi_key_addr, key_version);
| |
− |
| |
− | // Clear out key data
| |
− | memset(key_buf, 0, 0x7C);
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Restore previous cauth value
| |
− | cauth(c_old);
| |
− |
| |
− | return res;
| |
− |
| |
− | ===== gen_usr_key =====
| |
− | This method takes '''type''' and '''mode''' as arguments and generates a key.
| |
− | u8 seed_buf[0x10];
| |
− |
| |
− | // Read a 16 bytes seed based on supplied type
| |
− | /*
| |
− | Type 0: "CODE_SIG_01" + null padding
| |
− | Type 1: "CODE_ENC_01" + null padding
| |
− | */
| |
− | get_seed(seed_buf, type);
| |
− |
| |
− | // This will write the seed into crypto register c0
| |
− | crypt_store(0, seed_buf);
| |
− |
| |
− | // fuc5 csecret instruction
| |
− | // Load selected secret into crypto register c1
| |
− | csecret(c1, 0x26);
| |
− |
| |
− | // fuc5 ckeyreg instruction
| |
− | // Bind c1 register as the key for enc/dec operations
| |
− | ckeyreg(c1);
| |
− |
| |
− | // fuc5 cenc instruction
| |
− | // Encrypt seed_buf (in c0) using keyreg value as key into c1
| |
− | cenc(c1, c0);
| |
− |
| |
− | // fuc5 csigenc instruction
| |
− | // Encrypt c1 register with the auth signature stored in c6
| |
− | csigenc(c1, c1);
| |
− |
| |
− | // Copy the result into c4 (will be used as key)
| |
− | cmov(c4, c1);
| |
− |
| |
− | // Do key expansion (for decryption)
| |
− | if (mode != 0)
| |
− | ckexp(c4, c4); // fuc5 ckexp instruction
| |
− |
| |
− | return;
| |
− |
| |
− | ===== enc_buffer =====
| |
− | This method takes '''buf''' (a 16 bytes buffer) and '''size''' as arguments and encrypts the supplied buffer.
| |
− | // Set first 3 words to null
| |
− | *(u32 *)(buf + 0x00) = 0;
| |
− | *(u32 *)(buf + 0x04) = 0;
| |
− | *(u32 *)(buf + 0x08) = 0;
| |
− |
| |
− | // Swap halves (b16, b32 and b16 again)
| |
− | hswap(size);
| |
− |
| |
− | // Store the size as the last word
| |
− | *(u32 *)(buf + 0x0C) = size;
| |
− |
| |
− | // This will write buf into crypto register c3
| |
− | crypt_store(0x03, buf);
| |
− |
| |
− | // fuc5 ckeyreg instruction
| |
− | // Bind c4 register (from keygen) as the key for enc/dec operations
| |
− | ckeyreg(c4);
| |
− |
| |
− | // fuc5 cenc instruction
| |
− | // Encrypt buf (in c3) using keyreg value as key into c5
| |
− | cenc(c5, c3);
| |
− |
| |
− | // This will read into buf from crypto register c5
| |
− | crypt_load(0x05, buf);
| |
− |
| |
− | return;
| |
− |
| |
− | ===== do_crypto =====
| |
− | This is the method responsible for all crypto operations performed during [[#KeygenLdr|KeygenLdr]]. It takes '''src_addr''', '''src_size''', '''iv_addr''', '''dst_addr''', '''mode''' and '''use_imem''' as arguments.
| |
− | // Check for invalid source data size
| |
− | if (!src_size || (src_size & 0x0F))
| |
− | exit();
| |
− |
| |
− | // Check for invalid source data address
| |
− | if (src_addr & 0x0F)
| |
− | exit();
| |
− |
| |
− | // Check for invalid destination data address
| |
− | if (dst_addr & 0x0F)
| |
− | exit();
| |
− |
| |
− | // Use IV if available
| |
− | if (iv_addr)
| |
− | {
| |
− | // This will write the iv_addr into crypto register c5
| |
− | crypt_store(0x05, iv_addr);
| |
− | }
| |
− | else
| |
− | {
| |
− | // Clear c5 register (use null IV)
| |
− | cxor(c5, c5);
| |
− | }
| |
− |
| |
− | // Use key in c4
| |
− | ckeyreg(c4);
| |
− |
| |
− | // AES-128-CBC decrypt
| |
− | if (mode == 0x00)
| |
− | {
| |
− | // Create crypto script with 5 instructions
| |
− | cs0begin(0x05);
| |
− |
| |
− | cxsin(c3); // Read 0x10 bytes from crypto stream into c3
| |
− | cdec(c2, c3); // Decrypt from c3 into c2
| |
− | cxor(c5, c2); // XOR c2 with c5 and store in c5
| |
− | cxsout(c5); // Write 0x10 bytes into crypto stream from c5
| |
− | cmov(c5, c3); // Move c3 into c5
| |
− | }
| |
− | else if (mode == 0x01) // AES-128-CBC encrypt
| |
− | {
| |
− | // Create crypto script with 4 instructions
| |
− | cs0begin(0x04);
| |
− |
| |
− | cxsin(c3); // Read 0x10 bytes from crypto stream into c3
| |
− | cxor(c3, c5); // XOR c5 with c3 and store in c3
| |
− | cenc(c5, c3); // Encrypt from c3 into c5
| |
− | cxsout(c5); // Write 0x10 bytes into crypto stream from c5
| |
− | }
| |
− | else if (mode == 0x02) // AES-CMAC
| |
− | {
| |
− | // Create crypto script with 3 instructions
| |
− | cs0begin(0x03);
| |
− |
| |
− | cxsin(c3); // Read 0x10 bytes from crypto stream into c3
| |
− | cxor(c5, c3); // XOR c5 with c3 and store in c3
| |
− | cenc(c5, c5); // Encrypt from c5 into c5
| |
− | }
| |
− | else if (mode == 0x03) // AES-128-ECB decrypt
| |
− | {
| |
− | // Create crypto script with 3 instructions
| |
− | cs0begin(0x03);
| |
− |
| |
− | cxsin(c3); // Read 0x10 bytes from crypto stream into c3
| |
− | cdec(c5, c3); // Decrypt from c3 into c5
| |
− | cxsout(c5); // Write 0x10 bytes into crypto stream from c5
| |
− | }
| |
− | else if (mode == 0x04) // AES-128-ECB encrypt
| |
− | {
| |
− | // Create crypto script with 3 instructions
| |
− | cs0begin(0x03);
| |
− |
| |
− | cxsin(c3); // Read 0x10 bytes from crypto stream into c3
| |
− | cenc(c5, c3); // Encrypt from c3 into c5
| |
− | cxsout(c5); // Write 0x10 bytes into crypto stream from c5
| |
− | }
| |
− | else
| |
− | return;
| |
− |
| |
− | // Main loop
| |
− | while (src_size > 0)
| |
− | {
| |
− | u32 blk_count = (src_size >> 0x04);
| |
− |
| |
− | if (blk_count > 0x10)
| |
− | blk_count = 0x10;
| |
− |
| |
− | // Check size align
| |
− | if (blk_count & (blk_count - 0x01))
| |
− | blk_count = 0x01;
| |
− |
| |
− | u32 blk_size = (blk_count << 0x04);
| |
− |
| |
− | u32 crypt_xfer_src = 0;
| |
− | u32 crypt_xfer_dst = 0;
| |
− |
| |
− | if (block_size == 0x20)
| |
− | {
| |
− | crypt_xfer_src = (0x00030000 | src_addr);
| |
− | crypt_xfer_dst = (0x00030000 | dst_addr);
| |
− |
| |
− | // Execute crypto script 2 times (1 for each block)
| |
− | cs0exec(0x02);
| |
− | }
| |
− | if (block_size == 0x40)
| |
− | {
| |
− | crypt_xfer_src = (0x00040000 | src_addr);
| |
− | crypt_xfer_dst = (0x00040000 | dst_addr);
| |
− |
| |
− | // Execute crypto script 4 times (1 for each block)
| |
− | cs0exec(0x04);
| |
− | }
| |
− | if (block_size == 0x80)
| |
− | {
| |
− | crypt_xfer_src = (0x00050000 | src_addr);
| |
− | crypt_xfer_dst = (0x00050000 | dst_addr);
| |
− |
| |
− | // Execute crypto script 8 times (1 for each block)
| |
− | cs0exec(0x08);
| |
− | }
| |
− | if (block_size == 0x100)
| |
− | {
| |
− | crypt_xfer_src = (0x00060000 | src_addr);
| |
− | crypt_xfer_dst = (0x00060000 | dst_addr);
| |
− |
| |
− | // Execute crypto script 16 times (1 for each block)
| |
− | cs0exec(0x10);
| |
− | }
| |
− | else
| |
− | {
| |
− | crypt_xfer_src = (0x00020000 | src_addr);
| |
− | crypt_xfer_dst = (0x00020000 | dst_addr);
| |
− |
| |
− | // Execute crypto script 1 time (1 for each block)
| |
− | cs0exec(0x01);
| |
− |
| |
− | // Ensure proper block size
| |
− | block_size = 0x10;
| |
− | }
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next xfer instruction will be overridden
| |
− | // and target changes from DMA to crypto input/output stream
| |
− | if (use_imem)
| |
− | cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream
| |
− | else
| |
− | cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream
| |
− |
| |
− | // Transfer data into the crypto input/output stream
| |
− | xdst(crypt_xfer_src, crypt_xfer_src);
| |
− |
| |
− | // AES-CMAC only needs one more xfer instruction
| |
− | if (mode == 0x02)
| |
− | {
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next xfer instruction will be overridden
| |
− | // and target changes from DMA to crypto input/output stream
| |
− | if (use_imem)
| |
− | cxset(0xA1); // Flag 0xA0 is falcon imem <-> crypto input/output stream
| |
− | else
| |
− | cxset(0x21); // Flag 0x20 is external mem <-> crypto input/output stream
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− | }
| |
− | else // AES enc/dec needs 2 more xfer instructions
| |
− | {
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next 2 xfer instructions will be overridden
| |
− | // and target changes from DMA to crypto input/output stream
| |
− | if (use_imem)
| |
− | cxset(0xA2); // Flag 0xA0 is falcon imem <-> crypto input/output stream
| |
− | else
| |
− | cxset(0x22); // Flag 0x20 is external mem <-> crypto input/output stream
| |
− |
| |
− | // Transfer data from the crypto input/output stream
| |
− | xdld(crypt_xfer_dst, crypt_xfer_dst);
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | // Increase the destination address by block size
| |
− | dst_addr += block_size;
| |
− | }
| |
− |
| |
− | // Increase the source address by block size
| |
− | src_addr += block_size;
| |
− |
| |
− | // Decrease the source size by block size
| |
− | src_size -= block_size;
| |
− | }
| |
− |
| |
− | // AES-CMAC result is in c5
| |
− | if (mode == 0x02)
| |
− | {
| |
− | // This will read into dst_addr from crypto register c5
| |
− | crypt_load(0x05, dst_addr);
| |
− | }
| |
− |
| |
− | return;
| |
− |
| |
− | == Keygen ==
| |
− | This stage is decrypted by [[#KeygenLdr|KeygenLdr]] using a key generated by encrypting a seed with an hardware secret. It will generate the final TSEC key.
| |
− |
| |
− | == Loader ==
| |
− | This stage starts by authenticating and executing [[#KeygenLdr|KeygenLdr]] which in turn authenticates, decrypts and executes [[#Keygen|Keygen]] (both blobs remain unchanged from previous firmware versions).
| |
− | After the TSEC key has been generated, execution returns to this stage which then parses and executes [[#Payload|Payload]].
| |
− |
| |
− | === Main ===
| |
− | u8 key_data_buf[0x84];
| |
− | u8 tmp_key_data_buf[0x84];
| |
− |
| |
− | // Read the key data from memory
| |
− | u32 key_data_addr = 0x300;
| |
− | u32 key_data_size = 0x84;
| |
− | read_code(key_data_buf, key_data_addr, key_data_size);
| |
− |
| |
− | // Read the KeygenLdr blob from memory
| |
− | u32 boot_base_addr = 0;
| |
− | u32 blob1_addr = 0x400;
| |
− | u32 blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | read_code(boot_base_addr, blob1_addr, blob1_size);
| |
− |
| |
− | // Upload the next code segment into Falcon's CODE region
| |
− | u32 blob1_virt_addr = 0x300;
| |
− | bool use_secret = true;
| |
− | upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret);
| |
− |
| |
− | // Backup the key data
| |
− | memcpy(tmp_key_data_buf, key_data_buf, 0x84);
| |
− |
| |
− | // Save previous cauth value
| |
− | u32 c_old = cauth_old;
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Set auth_addr to 0x300 and auth_size to blob1_size
| |
− | cauth((blob1_size << 0x10) | (0x300 >> 0x08));
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next 2 xfer instructions will be overridden
| |
− | // and target changes from DMA to crypto
| |
− | cxset(0x02);
| |
− |
| |
− | u32 crypt_reg_flag = 0x00060000;
| |
− | u32 blob1_hash_addr = tmp_key_data_buf + 0x20;
| |
− |
| |
− | // Transfer data to crypto register c6
| |
− | xdst(0, (blob1_hash_addr | crypt_reg_flag));
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | u32 key_version = 0x01;
| |
− | bool is_blob_dec = false;
| |
− |
| |
− | // Jump to KeygenLdr
| |
− | u32 keygenldr_res = exec_keygenldr(tmp_key_data_buf, key_version, is_blob_dec);
| |
− |
| |
− | // Set boot finish magic on success
| |
− | if (keygenldr_res == 0)
| |
− | keygenldr_res = 0xB0B0B0B0
| |
− |
| |
− | // Write result to FALCON_SCRATCH1
| |
− | *(u32 *)FALCON_SCRATCH1 = keygenldr_res;
| |
− |
| |
− | if (keygenldr_res != 0xB0B0B0B0)
| |
− | return keygenldr_res;
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Restore previous cauth value
| |
− | cauth(c_old);
| |
− |
| |
− | u8 flcn_hdr_buf[0x18];
| |
− | u8 flcn_os_hdr_buf[0x10];
| |
− |
| |
− | blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | u32 blob2_size = *(u32 *)(key_data_buf + 0x78);
| |
− | u32 blob0_size = *(u32 *)(key_data_buf + 0x70);
| |
− |
| |
− | // Read the Payload blob's Falcon header from memory
| |
− | u32 blob4_flcn_hdr_addr = (((blob0_size + blob1_size) + 0x100) + blob2_size);
| |
− | read_code(flcn_hdr_buf, blob4_flcn_hdr_addr, 0x18);
| |
− |
| |
− | blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | blob2_size = *(u32 *)(key_data_buf + 0x78);
| |
− | blob0_size = *(u32 *)(key_data_buf + 0x70);
| |
− | u32 flcn_hdr_size = *(u32 *)(flcn_hdr_buf + 0x0C);
| |
− |
| |
− | // Read the Payload blob's Falcon OS header from memory
| |
− | u32 blob4_flcn_os_hdr_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_hdr_size);
| |
− | read_code(flcn_os_hdr_buf, blob4_flcn_os_hdr_addr, 0x10);
| |
− |
| |
− | blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | blob2_size = *(u32 *)(key_data_buf + 0x78);
| |
− | blob0_size = *(u32 *)(key_data_buf + 0x70);
| |
− | u32 flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
| |
− | u32 flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
| |
− |
| |
− | // Read the Payload blob's Falcon OS image from memory
| |
− | u32 blob4_flcn_os_addr = ((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size);
| |
− | read_code(boot_base_addr, blob4_flcn_os_hdr_addr, flcn_os_size);
| |
− |
| |
− | // Upload the Payload's Falcon OS image boot stub code segment into Falcon's CODE region
| |
− | u32 blob4_flcn_os_boot_virt_addr = 0;
| |
− | u32 blob4_flcn_os_boot_size = 0x100;
| |
− | use_secret = false;
| |
− | upload_code(blob4_flcn_os_boot_virt_addr, boot_base_addr, blob4_flcn_os_boot_size, blob4_flcn_os_boot_virt_addr, use_secret);
| |
− |
| |
− | flcn_os_size = *(u32 *)(flcn_os_hdr_buf + 0x04);
| |
− |
| |
− | // Upload the Payload blob's Falcon OS encrypted image code segment into Falcon's CODE region
| |
− | u32 blob4_flcn_os_img_virt_addr = 0x100;
| |
− | u32 blob4_flcn_os_img_size = (flcn_os_size - 0x100);
| |
− | use_secret = true;
| |
− | upload_code(blob4_flcn_os_img_virt_addr, boot_base_addr + 0x100, blob4_flcn_os_img_size, blob4_flcn_os_img_virt_addr, use_secret);
| |
− |
| |
− | // Wait for all code loads to finish
| |
− | xcwait();
| |
− |
| |
− | blob1_size = *(u32 *)(key_data_buf + 0x74);
| |
− | blob2_size = *(u32 *)(key_data_buf + 0x78);
| |
− | blob0_size = *(u32 *)(key_data_buf + 0x70);
| |
− | flcn_code_hdr_size = *(u32 *)(flcn_hdr_buf + 0x10);
| |
− | u32 flcn_os_code_size = *(u32 *)(flcn_os_hdr_buf + 0x08);
| |
− |
| |
− | // Read the Payload blob's falcon OS image's hash from memory
| |
− | u32 blob4_flcn_os_img_hash_addr = (((((blob0_size + blob1_size) + 0x100) + blob2_size) + flcn_code_hdr_size) + flcn_os_code_size);
| |
− | read_code(0, blob4_flcn_os_img_hash_addr, 0x10);
| |
− |
| |
− | // Read data segment size from IO space
| |
− | u32 data_seg_size = *(u32 *)UC_CAPS;
| |
− | data_seg_size >>= 0x03;
| |
− | data_seg_size &= 0x3FC0;
| |
− |
| |
− | u32 data_addr = 0x10;
| |
− |
| |
− | // Clear all data except the first 0x10 bytes (Payload blob's Falcon OS image's hash)
| |
− | for (int data_word_count = 0x04; data_word_count < data_seg_size; data_word_count++)
| |
− | {
| |
− | *(u32 *)(data_addr) = 0;
| |
− | data_addr += 0x04;
| |
− | }
| |
− |
| |
− | // Clear all crypto registers
| |
− | cxor(c0, c0);
| |
− | cxor(c1, c1);
| |
− | cxor(c2, c2);
| |
− | cxor(c3, c3);
| |
− | cxor(c4, c4);
| |
− | cxor(c5, c5);
| |
− | cxor(c6, c6);
| |
− | cxor(c7, c7);
| |
− |
| |
− | // fuc5 crypt csigclr instruction
| |
− | // Clears the cauth signature
| |
− | csigclr();
| |
− |
| |
− | // Jump to Payload
| |
− | exec_payload();
| |
− |
| |
− | return 0xB0B0B0B0;
| |
− |
| |
− | == Payload ==
| |
− | This stage prepares the stack then authenticates, decrypts and executes the Payload blob's Falcon OS image.
| |
− |
| |
− | === Main ===
| |
− | // Read data segment size from IO space
| |
− | u32 data_seg_size = *(u32 *)UC_CAPS;
| |
− | data_seg_size >>= 0x01;
| |
− | data_seg_size &= 0xFF00;
| |
− |
| |
− | // Set the stack pointer
| |
− | *(u32 *)sp = data_seg_size;
| |
− |
| |
− | // Jump to the Payload blob's Falcon OS image boot stub
| |
− | exec_flcn_os_boot();
| |
− |
| |
− | // Halt execution
| |
− | exit();
| |
− |
| |
− | return;
| |
− |
| |
− | ==== exec_flcn_os_boot ====
| |
− | // Read the transfer base address from IO space
| |
− | u32 xfer_ext_base_addr = *(u32 *)XFER_EXT_BASE;
| |
− |
| |
− | // Copy transfer base address to data memory
| |
− | u32 scratch_data_addr = 0x300;
| |
− | *(u32 *)scratch_data_addr = xfer_ext_base_addr;
| |
− |
| |
− | // Set the transfer base address
| |
− | xcbase(xfer_ext_base_addr);
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next xfer instruction will be overridden
| |
− | // and target changes from DMA to crypto
| |
− | cxset(0x01);
| |
− |
| |
− | u32 crypt_reg_flag = 0x00060000;
| |
− | u32 blob4_flcn_os_img_hash_addr = 0;
| |
− |
| |
− | // Transfer data to crypto register c6
| |
− | xdst(0, (blob4_flcn_os_img_hash_addr | crypt_reg_flag));
| |
− |
| |
− | // fuc5 crypt cxset instruction
| |
− | // The next xfer instruction will be overridden
| |
− | // and target changes from DMA to crypto
| |
− | cxset(0x01);
| |
− |
| |
− | // Wait for all data loads/stores to finish
| |
− | xdwait();
| |
− |
| |
− | cmov(c7, c6);
| |
− | cxor(c7, c7);
| |
− |
| |
− | // fuc5 crypt cauth instruction
| |
− | // Set auth_addr to 0x100, auth_size to 0x1300,
| |
− | // bit 16 (is_secret) and bit 17 (is_encrypted)
| |
− | cauth((0x02 << 0x10) | (0x01 << 0x10) | (0x1300 << 0x10) | (0x100 >> 0x08));
| |
− |
| |
− | // Clear interrupt flags
| |
− | *(u8 *)flags_ie0 = 0;
| |
− | *(u8 *)flags_ie1 = 0;
| |
− |
| |
− | // Jump to the Payload blob's Falcon OS image
| |
− | exec_flcn_os_img();
| |
− |
| |
− | return 0x0F0F0F0F;
| |
− |
| |
− | == Key data ==
| |
− | Small buffer stored after the [[#Boot|Boot]] blob and used across all stages.
| |
− |
| |
− | {| class="wikitable" border="1"
| |
− | ! Offset
| |
− | ! Size
| |
− | ! Description
| |
− | |-
| |
− | | 0x00
| |
− | | 0x10
| |
− | | Debug key (empty)
| |
− | |-
| |
− | | 0x10
| |
− | | 0x10
| |
− | | blob0 ([[#Boot|Boot]]) auth hash
| |
− | |-
| |
− | | 0x20
| |
− | | 0x10
| |
− | | blob1 ([[#KeygenLdr|KeygenLdr]]) auth hash
| |
− | |-
| |
− | | 0x30
| |
− | | 0x10
| |
− | | blob2 ([[#Keygen|Keygen]]) auth hash
| |
− | |-
| |
− | | 0x40
| |
− | | 0x10
| |
− | | blob2 ([[#Keygen|Keygen]]) AES IV
| |
− | |-
| |
− | | 0x50
| |
− | | 0x10
| |
− | | HOVI EKS seed
| |
− | |-
| |
− | | 0x60
| |
− | | 0x10
| |
− | | HOVI COMMON seed
| |
− | |-
| |
− | | 0x70
| |
− | | 0x04
| |
− | | blob0 ([[#Boot|Boot]]) size
| |
− | |-
| |
− | | 0x74
| |
− | | 0x04
| |
− | | blob1 ([[#KeygenLdr|KeygenLdr]]) size
| |
− | |-
| |
− | | 0x78
| |
− | | 0x04
| |
− | | blob2 ([[#Keygen|Keygen]]) size
| |
− | |-
| |
− | | 0x7C
| |
− | | 0x04
| |
− | | [6.2.0+] blob3 ([[#Loader|Loader]]) size
| |
− | |-
| |
− | | 0x80
| |
− | | 0x04
| |
− | | [6.2.0+] blob4 ([[#Payload|Payload]]) size
| |
| |} | | |} |
| | | |
TSEC (Tegra Security Co-processor) is a dedicated unit powered by a NVIDIA Falcon microprocessor with crypto extensions.
Driver
A host driver for communicating with the TSEC is mapped to physical address 0x54500000 with a total size of 0x40000 bytes and exposes several registers.
Registers
Registers from 0x54500000 to 0x54501000 are used to configure the host interface (HOST1X).
Registers from 0x54501000 to 0x54502000 are a MMIO window for communicating with the Falcon microprocessor. From this range, the subset of registers from 0x54501400 to 0x54501FE8 are specific to the TSEC and are subdivided into:
- 0x54501400 to 0x54501500: SCP (Secure Crypto Processor?).
- 0x54501500 to 0x54501600: TRNG (True Random Number Generator).
- 0x54501600 to 0x54501700: TFBIF (Tegra Framebuffer Interface).
- 0x54501700 to 0x54501800: DMA.
- 0x54501800 to 0x54501900: TEGRA (miscellaneous interfaces).
Name
|
Address
|
Width
|
TSEC_THI_INCR_SYNCPT
|
0x54500000
|
0x04
|
TSEC_THI_INCR_SYNCPT_ERR
|
0x54500008
|
0x04
|
TSEC_THI_CTXSW_INCR_SYNCPT
|
0x5450000C
|
0x04
|
TSEC_THI_CTXSW
|
0x54500020
|
0x04
|
TSEC_THI_CONT_SYNCPT_EOF
|
0x54500028
|
0x04
|
TSEC_THI_METHOD0
|
0x54500040
|
0x04
|
TSEC_THI_METHOD1
|
0x54500044
|
0x04
|
TSEC_THI_INT_STATUS
|
0x54500078
|
0x04
|
TSEC_THI_INT_MASK
|
0x5450007C
|
0x04
|
TSEC_THI_SLCG_STATUS
|
0x54500084
|
0x04
|
TSEC_THI_SLCG_OVERRIDE_HIGH_A
|
0x54500088
|
0x04
|
TSEC_THI_SLCG_OVERRIDE_LOW_A
|
0x5450008C
|
0x04
|
TSEC_THI_CLK_OVERRIDE
|
0x54500E00
|
0x04
|
FALCON_IRQSSET
|
0x54501000
|
0x04
|
FALCON_IRQSCLR
|
0x54501004
|
0x04
|
FALCON_IRQSTAT
|
0x54501008
|
0x04
|
FALCON_IRQMODE
|
0x5450100C
|
0x04
|
FALCON_IRQMSET
|
0x54501010
|
0x04
|
FALCON_IRQMCLR
|
0x54501014
|
0x04
|
FALCON_IRQMASK
|
0x54501018
|
0x04
|
FALCON_IRQDEST
|
0x5450101C
|
0x04
|
FALCON_GPTMR_PERIOD
|
0x54501020
|
0x04
|
FALCON_GPTMR_TIME
|
0x54501024
|
0x04
|
FALCON_GPTMR_ENABLE
|
0x54501028
|
0x04
|
FALCON_TIME_LOW
|
0x5450102C
|
0x04
|
FALCON_TIME_HIGH
|
0x54501030
|
0x04
|
FALCON_WDTMR_TIME
|
0x54501034
|
0x04
|
FALCON_WDTMR_ENABLE
|
0x54501038
|
0x04
|
FALCON_SCRATCH0
|
0x54501040
|
0x04
|
FALCON_SCRATCH1
|
0x54501044
|
0x04
|
FALCON_ITFEN
|
0x54501048
|
0x04
|
FALCON_IDLESTATE
|
0x5450104C
|
0x04
|
FALCON_CURCTX
|
0x54501050
|
0x04
|
FALCON_NXTCTX
|
0x54501054
|
0x04
|
FALCON_CMDCTX
|
0x54501058
|
0x04
|
FALCON_STATUS_MASK
|
0x5450105C
|
0x04
|
FALCON_VM_SUPERVISOR
|
0x54501060
|
0x04
|
FALCON_MTHD_DATA
|
0x54501064
|
0x04
|
FALCON_MTHD_CMD
|
0x54501068
|
0x04
|
FALCON_MTHD_DATA_WR
|
0x5450106C
|
0x04
|
FALCON_MTHD_OCCUPIED
|
0x54501070
|
0x04
|
FALCON_MTHD_ACK
|
0x54501074
|
0x04
|
FALCON_MTHD_LIMIT
|
0x54501078
|
0x04
|
FALCON_SUBENGINE_RESET
|
0x5450107C
|
0x04
|
FALCON_SCRATCH2
|
0x54501080
|
0x04
|
FALCON_SCRATCH3
|
0x54501084
|
0x04
|
FALCON_PM_TRIGGER
|
0x54501088
|
0x04
|
FALCON_PM_MODE
|
0x5450108C
|
0x04
|
FALCON_DEBUG1
|
0x54501090
|
0x04
|
FALCON_DEBUGINFO
|
0x54501094
|
0x04
|
FALCON_BREAKPOINT0
|
0x54501098
|
0x04
|
FALCON_BREAKPOINT1
|
0x5450109C
|
0x04
|
FALCON_CGCTL
|
0x545010A0
|
0x04
|
FALCON_ENGCTL
|
0x545010A4
|
0x04
|
FALCON_PM_SEL
|
0x545010A8
|
0x04
|
FALCON_HOST_IO_INDEX
|
0x545010AC
|
0x04
|
FALCON_EXCI
|
0x545010D0
|
0x04
|
FALCON_CPUCTL
|
0x54501100
|
0x04
|
FALCON_BOOTVEC
|
0x54501104
|
0x04
|
FALCON_HWCFG
|
0x54501108
|
0x04
|
FALCON_DMACTL
|
0x5450110C
|
0x04
|
FALCON_DMATRF_EXTBASE
|
0x54501110
|
0x04
|
FALCON_DMATRF_VOFF
|
0x54501114
|
0x04
|
FALCON_DMATRFCMD
|
0x54501118
|
0x04
|
FALCON_DMATRF_POFF
|
0x5450111C
|
0x04
|
FALCON_DMATRFSTAT
|
0x54501120
|
0x04
|
FALCON_CRYPTTRFSTAT
|
0x54501124
|
0x04
|
FALCON_CPUSTAT
|
0x54501128
|
0x04
|
FALCON_HWCFG2
|
0x5450112C
|
0x04
|
FALCON_CPUCTL_ALIAS
|
0x54501130
|
0x04
|
FALCON_TLB_CMD
|
0x54501140
|
0x04
|
FALCON_TLB_CMD_RES
|
0x54501144
|
0x04
|
FALCON_BRANCH_HISTORY_CTRL
|
0x54501148
|
0x04
|
FALCON_BRANCH_HISTORY_PC
|
0x5450114C
|
0x04
|
FALCON_IMFILLRNG0
|
0x54501150
|
0x04
|
FALCON_IMFILLRNG1
|
0x54501154
|
0x04
|
FALCON_IMFILLCTL
|
0x54501158
|
0x04
|
FALCON_EXTERRWIN
|
0x54501160
|
0x04
|
FALCON_EXTERRCFG
|
0x54501164
|
0x04
|
FALCON_EXTERRADDR
|
0x54501168
|
0x04
|
FALCON_EXTERRSTAT
|
0x5450116C
|
0x04
|
FALCON_CG2
|
0x5450117C
|
0x04
|
FALCON_CODE_INDEX
|
0x54501180
|
0x04
|
FALCON_CODE
|
0x54501184
|
0x04
|
FALCON_CODE_VIRT_ADDR
|
0x54501188
|
0x04
|
FALCON_DATA_INDEX0
|
0x545011C0
|
0x04
|
FALCON_DATA0
|
0x545011C4
|
0x04
|
FALCON_DATA_INDEX1
|
0x545011C8
|
0x04
|
FALCON_DATA1
|
0x545011CC
|
0x04
|
FALCON_DATA_INDEX2
|
0x545011D0
|
0x04
|
FALCON_DATA2
|
0x545011D4
|
0x04
|
FALCON_DATA_INDEX3
|
0x545011D8
|
0x04
|
FALCON_DATA3
|
0x545011DC
|
0x04
|
FALCON_DATA_INDEX4
|
0x545011E0
|
0x04
|
FALCON_DATA4
|
0x545011E4
|
0x04
|
FALCON_DATA_INDEX5
|
0x545011E8
|
0x04
|
FALCON_DATA5
|
0x545011EC
|
0x04
|
FALCON_DATA_INDEX6
|
0x545011F0
|
0x04
|
FALCON_DATA6
|
0x545011F4
|
0x04
|
FALCON_DATA_INDEX7
|
0x545011F8
|
0x04
|
FALCON_DATA7
|
0x545011FC
|
0x04
|
FALCON_ICD_CMD
|
0x54501200
|
0x04
|
FALCON_ICD_ADDR
|
0x54501204
|
0x04
|
FALCON_ICD_WDATA
|
0x54501208
|
0x04
|
FALCON_ICD_RDATA
|
0x5450120C
|
0x04
|
FALCON_SCTL
|
0x54501240
|
0x04
|
TSEC_SCP_CTL_ACCESS
|
0x54501400
|
0x04
|
TSEC_SCP_CTL_TRNG
|
0x54501404
|
0x04
|
TSEC_SCP_CTL_STAT
|
0x54501408
|
0x04
|
TSEC_SCP_CTL_MODE
|
0x5450140C
|
0x04
|
TSEC_SCP_UNK0
|
0x54501410
|
0x04
|
TSEC_SCP_CTL_PKEY
|
0x54501418
|
0x04
|
TSEC_SCP_SEQ0_STAT
|
0x54501420
|
0x04
|
TSEC_SCP_SEQ_STAT
|
0x54501428
|
0x04
|
TSEC_SCP_INSN_STAT
|
0x54501430
|
0x04
|
TSEC_SCP_UNK2
|
0x54501454
|
0x04
|
TSEC_SCP_AES_STAT
|
0x54501458
|
0x04
|
TSEC_SCP_UNK3
|
0x54501470
|
0x04
|
TSEC_SCP_IRQSTAT
|
0x54501480
|
0x04
|
TSEC_SCP_IRQMASK
|
0x54501484
|
0x04
|
TSEC_SCP_UNK4
|
0x54501490
|
0x04
|
TSEC_SCP_ERR
|
0x54501498
|
0x04
|
TSEC_TRNG_CLKDIV
|
0x54501500
|
0x04
|
TSEC_TRNG_UNK0
|
0x54501504
|
0x04
|
TSEC_TRNG_UNK1
|
0x5450150C
|
0x04
|
TSEC_TRNG_UNK2
|
0x54501510
|
0x04
|
TSEC_TRNG_UNK3
|
0x54501514
|
0x04
|
TSEC_TRNG_UNK4
|
0x54501518
|
0x04
|
TSEC_TRNG_UNK5
|
0x5450151C
|
0x04
|
TSEC_TRNG_UNK6
|
0x54501528
|
0x04
|
TSEC_TRNG_UNK7
|
0x5450152C
|
0x04
|
TSEC_TFBIF_UNK0
|
0x54501600
|
0x04
|
TSEC_TFBIF_MCCIF_FIFOCTRL
|
0x54501604
|
0x04
|
TSEC_TFBIF_UNK1
|
0x54501608
|
0x04
|
TSEC_TFBIF_UNK2
|
0x5450160C
|
0x04
|
TSEC_TFBIF_UNK3
|
0x54501630
|
0x04
|
TSEC_TFBIF_MCCIF_FIFOCTRL1
|
0x54501634
|
0x04
|
TSEC_TFBIF_UNK4
|
0x54501640
|
0x04
|
TSEC_TFBIF_UNK5
|
0x54501644
|
0x04
|
TSEC_TFBIF_UNK6
|
0x54501648
|
0x04
|
TSEC_DMA_CMD
|
0x54501700
|
0x04
|
TSEC_DMA_ADDR
|
0x54501704
|
0x04
|
TSEC_DMA_VAL
|
0x54501708
|
0x04
|
TSEC_DMA_UNK
|
0x5450170C
|
0x04
|
TSEC_TEGRA_FALCON_IP_VER
|
0x54501800
|
0x04
|
TSEC_TEGRA_UNK0
|
0x54501824
|
0x04
|
TSEC_TEGRA_UNK1
|
0x54501828
|
0x04
|
TSEC_TEGRA_UNK2
|
0x5450182C
|
0x04
|
TSEC_TEGRA_CTL
|
0x54501838
|
0x04
|
TSEC_THI_METHOD0
ID
|
Method
|
0x200
|
SET_APPLICATION_ID
|
0x300
|
EXECUTE
|
0x500
|
HDCP_INIT
|
0x504
|
HDCP_CREATE_SESSION
|
0x508
|
HDCP_VERIFY_CERT_RX
|
0x50C
|
HDCP_GENERATE_EKM
|
0x510
|
HDCP_REVOCATION_CHECK
|
0x514
|
HDCP_VERIFY_HPRIME
|
0x518
|
HDCP_ENCRYPT_PAIRING_INFO
|
0x51C
|
HDCP_DECRYPT_PAIRING_INFO
|
0x520
|
HDCP_UPDATE_SESSION
|
0x524
|
HDCP_GENERATE_LC_INIT
|
0x528
|
HDCP_VERIFY_LPRIME
|
0x52C
|
HDCP_GENERATE_SKE_INIT
|
0x530
|
HDCP_VERIFY_VPRIME
|
0x534
|
HDCP_ENCRYPTION_RUN_CTRL
|
0x538
|
HDCP_SESSION_CTRL
|
0x53C
|
HDCP_COMPUTE_SPRIME
|
0x540
|
HDCP_GET_CERT_RX
|
0x544
|
HDCP_EXCHANGE_INFO
|
0x548
|
HDCP_DECRYPT_KM
|
0x54C
|
HDCP_GET_HPRIME
|
0x550
|
HDCP_GENERATE_EKH_KM
|
0x554
|
HDCP_VERIFY_RTT_CHALLENGE
|
0x558
|
HDCP_GET_LPRIME
|
0x55C
|
HDCP_DECRYPT_KS
|
0x560
|
HDCP_DECRYPT
|
0x564
|
HDCP_GET_RRX
|
0x568
|
HDCP_DECRYPT_REENCRYPT
|
0x56C
|
|
0x570
|
|
0x574
|
|
0x578
|
|
0x57C
|
|
0x700
|
HDCP_VALIDATE_SRM
|
0x704
|
HDCP_VALIDATE_STREAM
|
0x708
|
HDCP_TEST_SECURE_STATUS
|
0x70C
|
HDCP_SET_DCP_KPUB
|
0x710
|
HDCP_SET_RX_KPUB
|
0x714
|
HDCP_SET_CERT_RX
|
0x718
|
HDCP_SET_SCRATCH_BUFFER
|
0x71C
|
HDCP_SET_SRM
|
0x720
|
HDCP_SET_RECEIVER_ID_LIST
|
0x724
|
HDCP_SET_SPRIME
|
0x728
|
HDCP_SET_ENC_INPUT_BUFFER
|
0x72C
|
HDCP_SET_ENC_OUTPUT_BUFFER
|
0x730
|
HDCP_GET_RTT_CHALLENGE
|
0x734
|
HDCP_STREAM_MANAGE
|
0x738
|
HDCP_READ_CAPS
|
0x73C
|
HDCP_ENCRYPT
|
0x740
|
[6.0.0+] HDCP_GET_CURRENT_NONCE
|
Used to encode and send a method's ID over HOST1X to TSEC. This register mirrors the functionality of HOST1X's channel opcode submission.
TSEC_THI_METHOD1
Used to encode and send a method's data over HOST1X to TSEC. This register mirrors the functionality of HOST1X's channel opcode submission.
TSEC_THI_INT_STATUS
Bits
|
Description
|
0
|
TSEC_THI_INT_STATUS_FALCON_INT
|
TSEC_THI_INT_MASK
Bits
|
Description
|
0
|
TSEC_THI_INT_MASK_FALCON_INT
|
FALCON_IRQSSET
Bits
|
Description
|
0
|
FALCON_IRQSSET_GPTMR
|
1
|
FALCON_IRQSSET_WDTMR
|
2
|
FALCON_IRQSSET_MTHD
|
3
|
FALCON_IRQSSET_CTXSW
|
4
|
FALCON_IRQSSET_HALT
|
5
|
FALCON_IRQSSET_EXTERR
|
6
|
FALCON_IRQSSET_SWGEN0
|
7
|
FALCON_IRQSSET_SWGEN1
|
8-15
|
FALCON_IRQSSET_EXT
|
Used for setting Falcon's IRQs.
FALCON_IRQSCLR
Bits
|
Description
|
0
|
FALCON_IRQSCLR_GPTMR
|
1
|
FALCON_IRQSCLR_WDTMR
|
2
|
FALCON_IRQSCLR_MTHD
|
3
|
FALCON_IRQSCLR_CTXSW
|
4
|
FALCON_IRQSCLR_HALT
|
5
|
FALCON_IRQSCLR_EXTERR
|
6
|
FALCON_IRQSCLR_SWGEN0
|
7
|
FALCON_IRQSCLR_SWGEN1
|
8-15
|
FALCON_IRQSCLR_EXT
|
Used for clearing Falcon's IRQs.
FALCON_IRQSTAT
Bits
|
Description
|
0
|
FALCON_IRQSTAT_GPTMR
|
1
|
FALCON_IRQSTAT_WDTMR
|
2
|
FALCON_IRQSTAT_MTHD
|
3
|
FALCON_IRQSTAT_CTXSW
|
4
|
FALCON_IRQSTAT_HALT
|
5
|
FALCON_IRQSTAT_EXTERR
|
6
|
FALCON_IRQSTAT_SWGEN0
|
7
|
FALCON_IRQSTAT_SWGEN1
|
8-15
|
FALCON_IRQSTAT_EXT
|
Used for getting the status of Falcon's IRQs.
FALCON_IRQMODE
Bits
|
Description
|
0
|
FALCON_IRQMODE_GPTMR
|
1
|
FALCON_IRQMODE_WDTMR
|
2
|
FALCON_IRQMODE_MTHD
|
3
|
FALCON_IRQMODE_CTXSW
|
4
|
FALCON_IRQMODE_HALT
|
5
|
FALCON_IRQMODE_EXTERR
|
6
|
FALCON_IRQMODE_SWGEN0
|
7
|
FALCON_IRQMODE_SWGEN1
|
8-15
|
FALCON_IRQMODE_EXT
|
Used for changing the mode Falcon's IRQs. A value of 1 means level triggered while a value of 0 means edge triggered.
FALCON_IRQMSET
Bits
|
Description
|
0
|
FALCON_IRQMSET_GPTMR
|
1
|
FALCON_IRQMSET_WDTMR
|
2
|
FALCON_IRQMSET_MTHD
|
3
|
FALCON_IRQMSET_CTXSW
|
4
|
FALCON_IRQMSET_HALT
|
5
|
FALCON_IRQMSET_EXTERR
|
6
|
FALCON_IRQMSET_SWGEN0
|
7
|
FALCON_IRQMSET_SWGEN1
|
8-15
|
FALCON_IRQMSET_EXT
|
Used for setting the mask for Falcon's IRQs.
FALCON_IRQMCLR
Bits
|
Description
|
0
|
FALCON_IRQMCLR_GPTMR
|
1
|
FALCON_IRQMCLR_WDTMR
|
2
|
FALCON_IRQMCLR_MTHD
|
3
|
FALCON_IRQMCLR_CTXSW
|
4
|
FALCON_IRQMCLR_HALT
|
5
|
FALCON_IRQMCLR_EXTERR
|
6
|
FALCON_IRQMCLR_SWGEN0
|
7
|
FALCON_IRQMCLR_SWGEN1
|
8-15
|
FALCON_IRQMCLR_EXT
|
Used for clearing the mask for Falcon's IRQs.
FALCON_IRQMASK
Bits
|
Description
|
0
|
FALCON_IRQMASK_GPTMR
|
1
|
FALCON_IRQMASK_WDTMR
|
2
|
FALCON_IRQMASK_MTHD
|
3
|
FALCON_IRQMASK_CTXSW
|
4
|
FALCON_IRQMASK_HALT
|
5
|
FALCON_IRQMASK_EXTERR
|
6
|
FALCON_IRQMASK_SWGEN0
|
7
|
FALCON_IRQMASK_SWGEN1
|
8-15
|
FALCON_IRQMASK_EXT
|
Used for getting the value of the mask for Falcon's IRQs.
FALCON_IRQDEST
Bits
|
Description
|
0
|
FALCON_IRQDEST_HOST_GPTMR
|
1
|
FALCON_IRQDEST_HOST_WDTMR
|
2
|
FALCON_IRQDEST_HOST_MTHD
|
3
|
FALCON_IRQDEST_HOST_CTXSW
|
4
|
FALCON_IRQDEST_HOST_HALT
|
5
|
FALCON_IRQDEST_HOST_EXTERR
|
6
|
FALCON_IRQDEST_HOST_SWGEN0
|
7
|
FALCON_IRQDEST_HOST_SWGEN1
|
8-15
|
FALCON_IRQDEST_HOST_EXT
|
16
|
FALCON_IRQDEST_TARGET_GPTMR
|
17
|
FALCON_IRQDEST_TARGET_WDTMR
|
18
|
FALCON_IRQDEST_TARGET_MTHD
|
19
|
FALCON_IRQDEST_TARGET_CTXSW
|
20
|
FALCON_IRQDEST_TARGET_HALT
|
21
|
FALCON_IRQDEST_TARGET_EXTERR
|
22
|
FALCON_IRQDEST_TARGET_SWGEN0
|
23
|
FALCON_IRQDEST_TARGET_SWGEN1
|
24-31
|
FALCON_IRQDEST_TARGET_EXT
|
Used for routing Falcon's IRQs.
FALCON_SCRATCH0
Scratch register for reading/writing data to Falcon.
FALCON_SCRATCH1
Scratch register for reading/writing data to Falcon.
FALCON_ITFEN
Bits
|
Description
|
0
|
FALCON_ITFEN_CTXEN
|
1
|
FALCON_ITFEN_MTHDEN
|
Used for enabling/disabling Falcon interfaces.
FALCON_IDLESTATE
Bits
|
Description
|
0
|
FALCON_IDLESTATE_FALCON_BUSY
|
1-15
|
FALCON_IDLESTATE_EXT_BUSY
|
Used for detecting if Falcon is busy or not.
FALCON_DEBUGINFO
Used for UCODE self revocation. This register takes the base address of the GSC carveout shifted right by 8.
[6.0.0+] nvservices sets this to 0x8005FF00 >> 8 (physical DRAM address inside the GPU UCODE carveout) before starting the nvhost_tsec firmware.
FALCON_EXCI
Contains information about raised exceptions.
FALCON_CPUCTL
Bits
|
Description
|
0
|
FALCON_CPUCTL_IINVAL
|
1
|
FALCON_CPUCTL_STARTCPU
|
2
|
FALCON_CPUCTL_SRESET
|
3
|
FALCON_CPUCTL_HRESET
|
4
|
FALCON_CPUCTL_HALTED
|
5
|
FALCON_CPUCTL_STOPPED
|
6
|
FALCON_CPUCTL_SCP_UNK
|
Used for signaling the Falcon CPU.
FALCON_BOOTVEC
Takes the Falcon's boot vector address.
FALCON_HWCFG
Bits
|
Description
|
0-8
|
FALCON_HWCFG_IMEM_SIZE
|
9-17
|
FALCON_HWCFG_DMEM_SIZE
|
18-25
|
FALCON_HWCFG_MTHD_SIZE
|
26-31
|
FALCON_HWCFG_DMATRF_SLOTS
|
FALCON_DMACTL
Bits
|
Description
|
0
|
FALCON_DMACTL_REQUIRE_CTX
|
1
|
FALCON_DMACTL_DMEM_SCRUBBING
|
2
|
FALCON_DMACTL_IMEM_SCRUBBING
|
3-6
|
FALCON_DMACTL_DMAQ_NUM
|
7
|
FALCON_DMACTL_SECURE_STAT
|
Used for configuring the Falcon's DMA engine.
FALCON_DMATRF_EXTBASE
Base of the external memory buffer.
The base of the transfer is calculated by adding #FALCON_DMATRF_POFF to the base.
FALCON_DMATRF_VOFF
For transfers to DMEM: the destination address.
For transfers to IMEM: the destination virtual IMEM page.
FALCON_DMATRF_POFF
For transfers to IMEM: the destination physical IMEM page.
FALCON_DMATRFCMD
Bits
|
Description
|
0
|
FALCON_DMATRFCMD_FULL
|
1
|
FALCON_DMATRFCMD_IDLE
|
2-3
|
FALCON_DMATRFCMD_SEC
|
4
|
FALCON_DMATRFCMD_IMEM
|
5
|
FALCON_DMATRFCMD_WRITE
|
8-10
|
FALCON_DMATRFCMD_SIZE
|
12-14
|
FALCON_DMATRFCMD_CTXDMA
|
Used for configuring DMA transfers.
FALCON_DMATRFSTAT
Bits
|
Description
|
0
|
FALCON_DMATRFSTAT_PENDING
|
16-18
|
FALCON_DMATRFSTAT_NUM_STORES_PENDING
|
24-26
|
FALCON_DMATRFSTAT_NUM_LOADS_PENDING
|
FALCON_CRYPTTRFSTAT
Bits
|
Description
|
1
|
FALCON_CRYPTTRFSTAT_PENDING
|
5
|
FALCON_CRYPTTRFSTAT_ENABLED
|
16-18
|
FALCON_CRYPTTRFSTAT_NUM_STORES_PENDING
|
24-26
|
FALCON_CRYPTTRFSTAT_NUM_LOADS_PENDING
|
FALCON_HWCFG2
Bits
|
Description
|
0-3
|
FALCON_HWCFG2_VERSION
|
4-5
|
FALCON_HWCFG2_SCP_MODE
|
6-7
|
FALCON_HWCFG2_SUBVERSION
|
8-11
|
FALCON_HWCFG2_IMEM_PORTS
|
12-15
|
FALCON_HWCFG2_DMEM_PORTS
|
16-19
|
FALCON_HWCFG2_VM_PAGES_LOG2
|
FALCON_ICD_CMD
Bits
|
Description
|
0-3
|
FALCON_ICD_CMD_OPC
0x0: BREAK
0x1: CONTINUE_FROM_PC
0x2: CONTINUE_FROM_ADDR
0x3: CONTINUE_UNK1_FROM_PC
0x4: CONTINUE_UNK1_FROM_ADDR
0x5: SINGLE_STEP_FROM_PC
0x6: SINGLE_STEP_FROM_ADDR
0x7: SET_BREAK_MASK
0x8: REG_READ
0x9: REG_WRITE
0xA: DATA_READ
0xB: DATA_WRITE
0xC: IO_READ
0xD: IO_WRITE
0xE: STATUS_READ
|
6-7
|
FALCON_ICD_CMD_DATA_SIZE
|
8-12
|
FALCON_ICD_CMD_IDX
|
14
|
FALCON_ICD_CMD_ERROR
|
15
|
FALCON_ICD_CMD_DONE
|
16-31
|
FALCON_ICD_CMD_BREAK_MASK
|
FALCON_SCTL
Bits
|
Description
|
0-1
|
FALCON_SCTL_SEC_MODE
0: Non-secure
1: Light Secure
2: Heavy Secure
|
TSEC_SCP_CTL_ACCESS
Bits
|
Description
|
20
|
Enable TSEC_SCP_INSN_STAT register
|
TSEC_SCP_CTL_TRNG
Bits
|
Description
|
11
|
Unknown
|
12
|
Enable the TRNG
|
TSEC_SCP_CTL_STAT
Bits
|
Description
|
20
|
TSEC_SCP_CTL_STAT_DEBUG_MODE
|
TSEC_SCP_CTL_MODE
Bits
|
Description
|
0
|
Disable reads for the TRNG register block
|
1
|
Disable reads for the TFBIF register block
|
2
|
Disable reads for the DMA register block
|
3
|
Disable reads for the TEGRA register block
|
4
|
Disable writes for the TRNG register block
|
5
|
Disable writes for the TFBIF register block
|
6
|
Disable writes for the DMA register block
|
7
|
Disable writes for the TEGRA register block
|
Controls accesses to the other sub-engines and can only be cleared in Heavy Secure mode.
TSEC_SCP_CTL_PKEY
Bits
|
Description
|
0
|
TSEC_SCP_CTL_PKEY_REQUEST_RELOAD
|
1
|
TSEC_SCP_CTL_PKEY_LOADED
|
TSEC_SCP_SEQ0_STAT
Bits
|
Description
|
8-11
|
Size of current cs0begin macro
|
TSEC_SCP_SEQ_STAT
Bits
|
Description
|
0
|
Set if crypto sequence recording (cs0begin/cs1begin) is active
|
4-7
|
Number of instructions left for the crypto sequence
|
12-15
|
Active crypto key register
|
Contains information on the last crypto sequence (cs0 or cs1) executed.
TSEC_SCP_INSN_STAT
Bits
|
Description
|
0-7
|
Crypto fuc5 destination register or immediate value
|
8-15
|
Crypto fuc5 source register or immediate value
|
16-30
|
Crypto fuc5 operation
0x0000: none (fuc5 opcode 0x00)
0x0010: cmov (fuc5 opcode 0x84)
0x0020: cxsin (fuc5 opcode 0x88) or xdst (with cxset)
0x0030: cxsout (fuc5 opcode 0x8C) or xdld (with cxset)
0x0040: crng (fuc5 opcode 0x90)
0x0050: cs0begin (fuc5 opcode 0x94)
0x0060: cs0exec (fuc5 opcode 0x98)
0x0070: cs1begin (fuc5 opcode 0x9C)
0x0080: cs1exec (fuc5 opcode 0xA0)
0x0090: invalid (fuc5 opcode 0xA4)
0x00A0: cchmod (fuc5 opcode 0xA8)
0x00B0: cxor (fuc5 opcode 0xAC)
0x00C0: cadd (fuc5 opcode 0xB0)
0x00D0: cand (fuc5 opcode 0xB4)
0x00E0: crev (fuc5 opcode 0xB8)
0x00F0: cprecmac (fuc5 opcode 0xBC)
0x0100: csecret (fuc5 opcode 0xC0)
0x0110: ckeyreg (fuc5 opcode 0xC4)
0x0120: ckexp (fuc5 opcode 0xC8)
0x0130: ckrexp (fuc5 opcode 0xCC)
0x0140: cenc (fuc5 opcode 0xD0)
0x0150: cdec (fuc5 opcode 0xD4)
0x0160: csigauth (fuc5 opcode 0xD8)
0x0170: csigenc (fuc5 opcode 0xDC)
0x0180: csigclr (fuc5 opcode 0xE0)
|
31
|
Set if running in secure mode (cauth)
|
Contains information on the last crypto instruction executed.
TSEC_SCP_AES_STAT
Bits
|
Description
|
0-4
|
First opcode
|
5-9
|
Second opcode
|
15-16
|
AES operation
0: Encryption
1: Decryption
2: Key expansion
3: Key reverse expansion
|
Contains information on the last AES sequence executed.
TSEC_SCP_IRQSTAT
Bits
|
Description
|
1
|
TSEC_SCP_IRQSTAT_TRNG
|
8
|
TSEC_SCP_IRQSTAT_HALT
|
12
|
Unknown
|
16
|
TSEC_SCP_IRQSTAT_INSN_ERROR
|
20
|
TSEC_SCP_IRQSTAT_SINGLE_STEP
|
24
|
Unknown
|
28
|
Unknown
|
Used for getting the status of crypto IRQs.
TSEC_SCP_IRQMASK
Bits
|
Description
|
1
|
TSEC_SCP_IRQMASK_TRNG
|
8
|
TSEC_SCP_IRQMASK_HALT
|
12
|
Unknown
|
16
|
TSEC_SCP_IRQMASK_INSN_ERROR
|
20
|
TSEC_SCP_IRQMASK_SINGLE_STEP
|
24
|
Unknown
|
28
|
Unknown
|
Used for getting the value of the mask for crypto IRQs.
TSEC_SCP_ERR
Bits
|
Description
|
0
|
Invalid instruction
|
4
|
Empty crypto sequence
|
8
|
Crypto sequence is too long
|
12
|
Crypto sequence was not finished
|
16
|
Invalid cauth signature (during csigenc, csigclr or csigunk)
|
24
|
Forbidden instruction
|
Contains information on crypto errors generated by the TSEC_SCP_IRQSTAT_INSN_ERROR IRQ.
TSEC_TFBIF_MCCIF_FIFOCTRL
Bits
|
Description
|
0
|
TSEC_TFBIF_MCCIF_FIFOCTRL_RCLK_OVERRIDE
|
1
|
TSEC_TFBIF_MCCIF_FIFOCTRL_WCLK_OVERRIDE
|
2
|
TSEC_TFBIF_MCCIF_FIFOCTRL_WRCL_MCLE2X
|
3
|
TSEC_TFBIF_MCCIF_FIFOCTRL_RDMC_RDFAST
|
4
|
TSEC_TFBIF_MCCIF_FIFOCTRL_WRMC_CLLE2X
|
5
|
TSEC_TFBIF_MCCIF_FIFOCTRL_RDCL_RDFAST
|
6
|
TSEC_TFBIF_MCCIF_FIFOCTRL_CCLK_OVERRIDE
|
7
|
TSEC_TFBIF_MCCIF_FIFOCTRL_RCLK_OVR_MODE
|
8
|
TSEC_TFBIF_MCCIF_FIFOCTRL_WCLK_OVR_MODE
|
TSEC_MCCIF_FIFOCTRL1
Bits
|
Description
|
0-15
|
TSEC_TFBIF_MCCIF_FIFOCTRL1_SRD2MC_REORDER_DEPTH_LIMIT
|
16-31
|
TSEC_TFBIF_MCCIF_FIFOCTRL1_SWR2MC_REORDER_DEPTH_LIMIT
|
TSEC_TFBIF_UNK5
Used to control accesses to DRAM.
[6.0.0+] The nvhost_tsec firmware sets this register to 0x10 or 0x111110 before reading memory from the GPU UCODE carveout.
TSEC_TFBIF_UNK6
Used to control accesses to DRAM.
[6.0.0+] The nvhost_tsec firmware sets this register to (data_size << 4) before reading memory from the GPU UCODE carveout.
TSEC_DMA_CMD
Bits
|
Description
|
0
|
TSEC_DMA_CMD_READ
|
1
|
TSEC_DMA_CMD_WRITE
|
4-7
|
TSEC_DMA_CMD_UNK
|
12
|
TSEC_DMA_CMD_BUSY
|
13
|
TSEC_DMA_CMD_ERROR
|
31
|
TSEC_DMA_CMD_INIT
|
A DMA read/write operation requires bits TSEC_DMA_CMD_INIT and TSEC_DMA_CMD_READ/TSEC_DMA_CMD_WRITE to be set in TSEC_DMA_CMD.
During the transfer, the TSEC_DMA_CMD_BUSY bit is set.
Accessing an invalid address causes bit TSEC_DMA_CMD_ERROR to be set.
TSEC_DMA_ADDR
Takes the address for DMA transfers between TSEC and HOST1X (master and clients).
TSEC_DMA_VAL
Takes the value for DMA transfers between TSEC and HOST1X (master and clients).
TSEC_DMA_UNK
Always 0xFFF.
TSEC_TEGRA_CTL
Bits
|
Description
|
16
|
TSEC_TEGRA_CTL_TKFI_KFUSE
|
17
|
TSEC_TEGRA_CTL_TKFI_RESTART_FSM_KFUSE
|
24
|
TSEC_TEGRA_CTL_TMPI_FORCE_IDLE_INPUTS_I2C
|
25
|
TSEC_TEGRA_CTL_TMPI_RESTART_FSM_HOST1X
|
26
|
TSEC_TEGRA_CTL_TMPI_RESTART_FSM_APB
|
27
|
TSEC_TEGRA_CTL_TMPI_DISABLE_OUTPUT_I2C
|
Notes
Part of the information here (which hasn't made it into envytools documentation yet) was shared by mwk from reverse engineering falcon processors over the years.
Register ACLs
Falcon tracks permission metadata about each crypto reg. Permissions include read/write ability per execution mode, as well as ability to use the reg for encrypt/decrypt, among other permissions. Permissions are propagated when registers are referenced by instructions (e.g. moving a value from read-protected $cX to $cY will result in $cY also being read-protected).
Authenticated Mode Entry/Exit
Entry to Authenticated Mode always sets $pc to the address supplied in $cauth (ie the base of the signature-checked region). This takes effect when trying to branch to any address within the range covered by $cauth. Entry to Authenticated Mode (also called "Secure Mode") computes a MAC over the $cauth region and compares it to $c6 in order to perform the signature check.
Exit from Authenticated Mode must poke a special register before leaving authenticated code pages and a failure to do this would result in the Falcon core halting. Every Falcon based unit (TSEC, NVDEC, VIC) must map this register in their engine-specific subset of registers. In TSEC's case, the register is TSEC_SCP_CTL_MODE.
csigauth
00000000: f5 3c XY d8 csigauth $cY $cX
This instruction takes 2 crypto registers as operands and is automatically executed when jumping to a code region previously uploaded as secret.
Under certain circumstances, it is possible to observe this instruction being briefly written to TSEC_SCP_INSN_STAT as "csigauth $c4 $c6" while the opcodes in TSEC_SCP_AES_STAT are set to "cxsin" and "csigauth", respectively. Also, via TSEC_SCP_SEQ0_STAT it can be observed that a 3-sized macro sequence is loaded into cs0 during a secure mode transition.
csigclr
00000000: f5 3c 00 e0 csigclr
This instruction takes no operands and appears to clear the saved cauth signature used by the csigenc instruction.
cchmod
00000000: f5 3c XY a8 cchmod $cY 0X
or 00000000: f5 3c XY a9 cchmod $cY 1X
This instruction takes a crypto register and a 5 bit immediate value. It appears to set the crypto registers' ACL bits as follows:
Bits
|
Description
|
0
|
Allow register to be used as key in NS or LS mode
|
1
|
Allow register to be used as key in HS mode
|
2
|
Set register as readable in NS or LS mode
|
3
|
Set register as readable in HS mode
|
4
|
Set register as writable in NS or LS mode
|
crng
00000000: f5 3c 0X 90 crng $cX
This instruction initializes a crypto register with random data.
Executing this instruction only succeeds if the TRNG is enabled for the SCP, which requires taking the following steps:
- Write 0x7FFF to TSEC_TRNG_CLKDIV.
- Write 0x3FF0000 to TSEC_TRNG_UNK0.
- Write 0xFF00 to TSEC_TRNG_UNK7.
- Write 0x1000 to TSEC_SCP_CTL_TRNG.
cxset
cxset instruction provides a way to change behavior of a variable amount of successively executed DMA-related instructions.
for example: 000000de: f4 3c 02 cxset 0x2
can be read as: dma_override(type=crypto_reg, count=2)
The argument to cxset specifies the type of behavior change in the top 3 bits, and the number of DMA-related instructions the effect lasts for in the lower 5 bits.
Bits |
Description
|
0-4 |
Number of instructions it is valid for
|
5 |
Crypto destination/source select (0=crypto register, 1=crypto stream)
|
6 |
External memory override (0=Disabled, 1=Enabled)
|
7 |
Internal memory select (0=DMEM, 1=IMEM)
|
DMA-Related Instructions
At least the following instructions may have changed behavior, and count against the cxset "count" argument: xdwait
, xdst
, xdld
.
For example, if override type=0b000, then the "length" argument to xdst
is instead treated as the index of the target $cX register.
Secrets
Falcon's Authenticated Mode has access to 64 128-bit keys which are burned at factory. These keys can be loaded by using the $csecret instruction which takes the target crypto register and the key index as arguments.
Index |
Notes
|
0x00 |
Used by nvhost_tsec, nvhost_nvdec_bl020_prod, nvhost_nvdec020_prod, nvhost_nvdec020_ns and acr_ucode firmwares. Debug mode only.
|
0x01 |
Used by nvhost_nvdec_bl020_prod firmware.
|
0x03 |
Used by nvhost_tsec, nvhost_nvdec020_prod and nvhost_nvdec020_ns firmwares.
|
0x04 |
Used by nvhost_tsec, nvhost_nvdec020_prod and nvhost_nvdec020_ns firmwares.
|
0x05 |
Used by nvhost_tsec, nvhost_nvdec_bl020_prod, nvhost_nvdec020_prod, nvhost_nvdec020_ns and acr_ucode firmwares.
|
0x07 |
Used by [6.0.0+] nvhost_tsec firmware.
|
0x09 |
Used by nvhost_tsec firmware.
|
0x0B |
Used by nvhost_tsec, nvhost_nvdec020_prod and nvhost_nvdec020_ns firmwares.
|
0x0F |
Used by nvhost_tsec firmware.
|
0x10 |
Used by [1.0.0-5.1.0] nvhost_tsec firmware.
|
0x15 |
Used by nvhost_nvdec_bl020_prod, [5.0.0+] nvhost_nvdec020_prod, [5.0.0+] nvhost_nvdec020_ns and [6.0.0+] nvhost_tsec firmwares.
|
0x26 |
Used by KeygenLdr.
|
0x3C |
Used by nvhost_tsec firmware.
|
0x3F |
Used by nvhost_tsec, nvhost_nvdec020_prod and nvhost_nvdec020_ns firmwares.
|