Difference between revisions of "TSEC"
(Created page with "Like most Tegra based devices, the Switch's GPU also includes a Falcon microprocessor. = Driver = A host driver for communicating with the Falcon is mapped to physical addres...") |
|||
Line 304: | Line 304: | ||
*(u32 *)sp = data_seg_size; | *(u32 *)sp = data_seg_size; | ||
+ | === Stage 1 loading === | ||
u32 boot_base_addr = 0; | u32 boot_base_addr = 0; | ||
u32 key_data_buf[0x7C]; | u32 key_data_buf[0x7C]; | ||
− | + | ||
− | |||
// Read the key data from memory | // Read the key data from memory | ||
u32 key_data_addr = 0x300; | u32 key_data_addr = 0x300; |
Revision as of 19:54, 11 August 2017
Like most Tegra based devices, the Switch's GPU also includes a Falcon microprocessor.
Driver
A host driver for communicating with the Falcon is mapped to physical address 0x54500000 with a total size of 0x40000 bytes and exposes several registers.
Registers
Name | Address | Width |
---|---|---|
FALCON_IRQMSET | 0x54501010 | 0x04 |
FALCON_IRQDEST | 0x5450101C | 0x04 |
FALCON_SCRATCH0 | 0x54501040 | 0x04 |
FALCON_SCRATCH1 | 0x54501044 | 0x04 |
FALCON_ITFEN | 0x54501048 | 0x04 |
FALCON_CPUCTL | 0x54501100 | 0x04 |
FALCON_BOOTVEC | 0x54501104 | 0x04 |
FALCON_DMACTL | 0x5450110C | 0x04 |
FALCON_DMATRFBASE | 0x54501110 | 0x04 |
FALCON_DMATRFMOFFS | 0x54501114 | 0x04 |
FALCON_DMATRFCMD | 0x54501118 | 0x04 |
FALCON_DMATRFFBOFFS | 0x5450111C | 0x04 |
FALCON_IRQMSET
Used for configuring Falcon's IRQs.
FALCON_IRQDEST
Used for configuring Falcon's IRQs.
FALCON_SCRATCH0
MMIO register for reading/writing data to Falcon.
FALCON_SCRATCH1
MMIO register for reading/writing data to Falcon.
FALCON_ITFEN
Bits | Description |
---|---|
0 | FALCON_ITFEN_CTXEN |
1 | FALCON_ITFEN_MTHDEN |
Used for enabling/disabling Falcon interfaces.
FALCON_CPUCTL
Bits | Description |
---|---|
0 | FALCON_CPUCTL_STARTCPU |
Used for signaling Falcon's CPU.
FALCON_BOOTVEC
Takes the Falcon's boot vector address.
FALCON_DMACTL
Bits | Description |
---|---|
1 | FALCON_DMACTL_DMEM_SCRUBBING |
2 | FALCON_DMACTL_IMEM_SCRUBBING |
Used for configuring the Falcon's DMA engine.
FALCON_DMATRFBASE
Takes the host's base address for transferring data to/from the Falcon (DMA).
FALCON_DMATRFMOFFS
Takes the offset for the host's source memory being transferred.
FALCON_DMATRFCMD
Bits | Description |
---|---|
1 | FALCON_DMATRFCMD_IDLE (this is set if the engine is idle) |
4 | FALCON_DMATRFCMD_IMEM |
9-10 | FALCON_DMATRFCMD_SIZE_256B |
Used for configuring DMA transfers.
FALCON_DMATRFFBOFFS
Takes the offset for Falcon's target memory being transferred.
Boot Process
The Falcon is configured and initialized by the first bootloader during key generation (sub_400114FC).
Initialization
During this stage several clocks are programmed.
// Program the HOST1X clock and resets set_host1x_clkrst(); // Program the TSEC clock and resets set_tsec_clkrst(); // Program the QSPI clock and resets (no source) set_qspi_clkrst(); // Program the SOR1 clock and resets (no source) set_sor1_clkrst0(); // Program the SOR1 clock and resets set_sor1_clkrst1(); // Enable clock and resets for H group set_h_clkrst();
Configuration
In this stage the Falcon IRQs, interfaces and DMA engine are configured.
// Clear the Falcon DMA control register *(u32 *)FALCON_DMACTL = 0; // Enable Falcon IRQs *(u32 *)FALCON_IRQMSET = 0xFFF2; // Enable Falcon IRQs *(u32 *)FALCON_IRQDEST = 0xFFF0; // Enable Falcon interfaces *(u32 *)FALCON_ITFEN = 0x03; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle();
Firmware loading
The Falcon firmware code is stored in the first bootloader's data segment in IMEM.
// Set DMA transfer base address to 0x40011900 >> 0x08 *(u32 *)FALCON_DMATRFBASE = 0x400119; u32 trf_mode = 0; // A value of 0 sets FALCON_DMATRFCMD_IMEM u32 dst_offset = 0; u32 src_offset = 0; // Load code into Falcon (0x100 bytes at a time) while (src_offset < 0xF00) { flcn_load_firm(trf_mode, src_offset, dst_offset); src_offset += 0x100; dst_offset += 0x100; }
Firmware booting
Falcon is booted up and the first bootloader waits for it to finish.
// Set host1x sync config *(u32 *)0x50003300 = 0x34C2E1DA; // Clear Falcon scratch1 MMIO *(u32 *)FALCON_SCRATCH1 = 0; // Set Falcon boot key version in scratch0 MMIO *(u32 *)FALCON_SCRATCH0 = 0x01; // Set Falcon's boot vector address *(u32 *)FALCON_BOOTVEC = 0; // Signal Falcon's CPU *(u32 *)FALCON_CPUCTL = 0x02; // Wait for Falcon's DMA engine to be idle wait_flcn_dma_idle(); u32 boot_res = 0; u32 time = 0; while (!boot_res) { // Read boot result from scratch1 MMIO boot_res = *(u32 *)FALCON_SCRATCH1; // Read from RTC_MILLISECONDS time = rtc_read(); // Booting is taking too long if (time > 2000000) panic(); } // Invalid boot result was returned if (boot_res != 0xB0B0B0B0) panic();
Keygen
In this final stage the Falcon device key is generated by reading SOR registers modified by Falcon.
// Clear host1x sync config *(u32 *)0x50003300 = 0; // Generate Falcon device key u32 falcon_device_key[4]; falcon_device_key[0] = *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB; falcon_device_key[1] = *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB; falcon_device_key[2] = *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB; falcon_device_key[3] = *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB; // Clear SOR registers *(u32 *)NV_SOR_DP_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_BKSV_LSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_MSB = 0; *(u32 *)NV_SOR_TMDS_HDCP_CN_LSB = 0; if (out_size < 0x10) out_size = 0x10; // Copy back the Falcon key memcpy(out_buf, falcon_device_key, out_size); // Deprogram UARTC and I2C5 clock and resets unset_uartc_i2c5_clkrst(); // Deprogram SOR1 clock and resets unset_sor1_clkrst1(); // Deprogram SOR1 clock and resets (no source) unset_sor1_clkrst0(); // Deprogram QSPI clock and resets (no source) unset_qspi_clkrst(); // Deprogram TSEC clock and resets unset_tsec_clkrst(); // Deprogram HOST1X clock and resets unset_host1x_clkrst() return;
Firmware
The actual code loaded into Falcon is assembled in NVIDIA's proprietary fuc5 ISA using crypto extensions. Stored inside the first bootloader, this firmware binary is split into 4 blobs: Stage0, Stage1, Stage2 and key data.
Stage 0
During this stage key data is loaded and Stage 1 is authenticated, loaded and executed. Before returning, this stage writes back to the host (using MMIO registers) and sets the device key used by the first bootloader.
Initialization
Falcon sets up it's own stack pointer.
// Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Set the stack pointer *(u32 *)sp = data_seg_size;
Stage 1 loading
u32 boot_base_addr = 0; u32 key_data_buf[0x7C]; // Read the key data from memory u32 key_data_addr = 0x300; u32 key_data_size = 0x7C; read_code(key_data_buf, key_data_addr, key_data_size); // Read the next code segment into boot base u32 blob1_addr = 0x400; u32 blob1_size = *(u32 *)(key_data_buf + 0x74); read_code(boot_base_addr, blob1_addr, blob1_size); // Upload the next code segment into Falcon's CODE region u32 blob1_virt_addr = 0x300; bool use_secret = true; upload_code(blob1_virt_addr, boot_base_addr, blob1_size, blob1_virt_addr, use_secret); u32 boot_res = 0; bool is_done = false; u32 time = 0; bool is_blob_dec = false; while (!is_done) { if (time > 4000000) { // Write boot failed (timeout) magic to FALCON_SCRATCH1 boot_res = 0xC0C0C0C0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } // Load key version from FALCON_SCRATCH0 (bootloader sends 0x01) u32 key_version = *(u32 *)FALCON_SCRATCH0; if (key_version == 0x64) { // Skip all next stages boot_res = 0xB0B0B0B0; *(u32 *)FALCON_SCRATCH1 = boot_res; break; } else { if (key_version > 0x03) boot_res = 0xD0D0D0D0; // Invalid key version else if (key_version == 0) boot_res = 0xB0B0B0B0; // No keys used else { u32 key_buf[0x7C]; // Copy key data memcpy(key_buf, key_data_buf, 0x7C); u32 xfer_size_flag = 0x00060000; u32 blob1_hash_addr = key_buf + 0x20; // fuc5 crypt cauth instruction // Set auth_addr to 0x300 and auth_size to blob1_size *(u32 *)cauth = ((blob1_size << 0x10) | (0x300 >> 0x08)); // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x02; // Transfer data from/to Falcon xdst(0, (blob1_hash_addr | xfer_size_flag)); // Wait for all data loads/stores to finish xdwait(); // Jump to Stage1 u32 stage1_res = exec_stage1(key_buf, key_version, is_blob_dec); is_blob_dec = true; // Set this to prevent decrypting again // Set boot finish magic on success if (stage1_res == 0) boot_res = 0xB0B0B0B0 } // Write result to FALCON_SCRATCH1 *(u32 *)FALCON_SCRATCH1 = boot_res; if (boot_res == 0xB0B0B0B0) is_done = true; } time++; } // Write Falcon device key to registers set_device_key(key_data_buf); return boot_res;
Stage 1
This stage is responsible for reconfiguring the Falcon's crypto co-processor and loading, decrypting, authenticating and executing Stage 2.
Crypto setup
// Clear interrupt flags *(u8 *)flags_ie0 = 0; *(u8 *)flags_ie1 = 0; *(u8 *)flags_ie2 = 0; // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x80; // fuc5 crypt cauth instruction *(u32 *)cauth &= 0x7FFFF; // Set the target port for memory transfers // Target will now be 0 (crypto) xtargets(0); // Wait for all data loads/stores to finish xdwait(); // Wait for all code loads to finish xcwait(); // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x02; // Transfer data from/to Falcon // This should clear all previous hashes xdst(0, 0); // Wait for all data loads/stores to finish xdwait(); // Clear crypto registers *(u32 *)c0 ^= *(u32 *)c0; *(u32 *)c1 = *(u32 *)c0; *(u32 *)c2 = *(u32 *)c0; *(u32 *)c3 = *(u32 *)c0; *(u32 *)c4 = *(u32 *)c0; *(u32 *)c5 = *(u32 *)c0; *(u32 *)c7 = *(u32 *)c0; // Update engine specific IO (crypto?) *(u32 *)0x00020E00 &= 0xEFFFF; // Update engine specific IO (crypto?) *(u32 *)0x00010600 |= 0x01; u32 wait_10600 = 0; // Wait for some device while (wait_10600 == 0) wait_10600 = (*(u32 *)0x00010600 & 0x02); // Read data segment size from IO space u32 data_seg_size = *(u32 *)UC_CAPS; data_seg_size >>= 0x09; data_seg_size &= 0x1FF; data_seg_size <<= 0x08; // Check stack bounds if ((*(u32 *)sp >= data_seg_size) || (*(u32 *)sp < 0x800)) return; // Decrypt and load Stage2 load_stage2(key_buf, key_version, is_blob_dec); // Clear crypto registers *(u32 *)c0 ^= *(u32 *)c0; *(u32 *)c1 ^= *(u32 *)c1; *(u32 *)c2 ^= *(u32 *)c2; *(u32 *)c3 ^= *(u32 *)c3; *(u32 *)c4 ^= *(u32 *)c4; *(u32 *)c5 ^= *(u32 *)c5; *(u32 *)c6 ^= *(u32 *)c6; *(u32 *)c7 ^= *(u32 *)c7; // Signal unknown engine *(u32 *)0x00010300 = 0; return;
Stage 2 loading
u32 res = 0; u32 boot_base_addr = 0; u32 blob0_addr = 0; u32 blob0_size = *(u32 *)(key_buf + 0x70); // Load blob0 code again read_code(boot_base_addr, blob0_addr, blob0_size); // Generate "CODE_SIG_01" key into c4 crypto register keygen(0, 0); // Encrypt buffer with c4 u32 sig_key[0x10]; enc_buf(sig_key, blob0_size); u32 src_addr = boot_base_addr; u32 src_size = blob0_size; u32 iv_addr = sig_key; u32 dst_addr = sig_key; u32 mode = 0x02; // AES-CMAC u32 version = 0; // Do AES-CMAC over blob0 code do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Compare the hashes if (memcmp(sig_key, key_buf + 0x10, 0x10)) { res = 0xDEADBEEF; return res; } u32 blob1_size = *(u32 *)(key_buf + 0x74); // Decrypt Stage2 blob if needed if (!is_blob_dec) { // Read Stage2's size from key buffer u32 blob2_size = *(u32 *)(key_buf + 0x78); // Check stack bounds if (*(u32 *)sp > blob2_size) { u32 boot_base_addr = 0; u32 blob2_virt_addr = blob0_size + blob1_size; u32 blob2_addr = blob2_virt_addr + 0x100; // Read Stage2's encrypted blob read_code(boot_base_addr, blob2_addr, blob2_size); // Generate "CODE_ENC_01" key into c4 crypt register keygen(0x01, 0x01); u32 src_addr = boot_base_addr; u32 src_size = blob2_size; u32 iv_addr = key_buf + 0x40; u32 dst_addr = boot_base_addr; u32 mode = 0; // AES-128-CBC u32 version = 0; // Decrypt Stage2 do_crypto(src_addr, src_size, iv_addr, dst_addr, mode, version); // Upload the next code segment into Falcon's CODE region bool use_secret = true; upload_code(blob2_virt_addr, boot_base_addr, blob2_size, blob2_virt_addr, use_secret); // Clear out the decrypted blob memset(boot_base_addr, 0, blob2_size); } } // fuc5 crypt cxset instruction // Set crypto transfer mode *(u32 *)cx = 0x02; u32 xfer_size_flag = 0x00060000; u32 blob2_hash_addr = key_buf + 0x30; // Transfer data from/to Falcon xdst(0, (blob2_hash_addr | xfer_size_flag)); // Wait for all data loads/stores to finish xdwait(); // Save previous cauth value u32 cauth_old = *(u32 *)cauth; // fuc5 crypt cauth instruction // Set auth_addr to blob2_virt_addr and auth_size to blob2_size *(u32 *)cauth = ((blob2_virt_addr >> 0x08) | (blob2_size << 0x10)); u32 hovi_key_addr = 0; // Select next stage key if (key_version == 0x01) // Use HOVI_EKS_01 hovi_key_addr = key_buf + 0x50; else if (key_version == 0x02) // Use HOVI_COMMON_01 hovi_key_addr = key_buf + 0x60; else if (key_version == 0x03) // Use device key hovi_key_addr = key_buf + 0x00; else res = 0xD0D0D0D0 // Jump to Stage2 if (hovi_key_addr) res = exec_stage2(hovi_key_addr, key_version); // Clear out key data memset(key_buf, 0, 0x7C); // Restore previous cauth value *(u32 *)cauth = cauth_old; return res;
Stage 2
This stage is decrypted by Stage 1 using an hardware secret. It is likely to be the main firmware code that stays running on the Falcon after the Switch's kernel is loaded (HOVI == Horizon VI?).
Key data
Small buffer stored after Stage 0's code and used across all stages.