Difference between revisions of "Cryptosystem"

From Nintendo Switch Brew
Jump to navigation Jump to search
(keyblobz)
(Some updates)
Line 49: Line 49:
 
   
 
   
 
== Falcon coprocessor ==
 
== Falcon coprocessor ==
The falcon processor (TSEC) stores a special console-unique key (that will be referred to as the "tsec key").
+
The falcon processor (TSEC) generates a special console-unique key (that will be referred to as the "tsec key").
  
This is presumably stored in fuses that only microcode authenticated by NVidia has access to.
+
This is presumably using data stored in fuses that only microcode authenticated by NVidia has access to.
 
 
The tsec key is the source of all per-console entropy, because SSK is not used on retail.
 
  
 
== Package1 ==
 
== Package1 ==
Line 109: Line 107:
 
|}
 
|}
  
=== [4.0.0]+ Key table after package1 ===
+
=== [4.0.0]+ Key table after package1 (Secure Monitor boot) ===
  
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
Line 126: Line 124:
 
|-
 
|-
 
| 13
 
| 13
| PerConsoleKey_40
+
| PerConsoleKeyForNewPerConsoleKeyGen
 
| [[Package1]]
 
| [[Package1]]
 
| Yes
 
| Yes
Line 132: Line 130:
 
|-
 
|-
 
| 14
 
| 14
| MasterKey_40
+
| StaticKeyForNewPerConsoleKeyGen
 +
| [[Package1]]
 +
| No
 +
| Yes, on security updates
 +
|-
 +
| 15
 +
| PerConsoleKey
 +
| [[Package1]]
 +
| Yes
 +
| No
 +
|}
 +
 
 +
=== [4.0.0]+ Key table after package1 (Secure Monitor runtime) ===
 +
 
 +
{| class="wikitable" border="1"
 +
|-
 +
! Keyslot
 +
! Name
 +
! Set by
 +
! Per-console
 +
! Per-firmware
 +
|-
 +
| 12
 +
| MasterKey
 
| [[Package1]]
 
| [[Package1]]
 
| No
 
| No
 +
| Yes, on security updates
 +
|-
 +
| 13
 +
| NewPerConsoleKey
 +
| Secure Monitor init
 +
| Yes
 
| Yes, on security updates
 
| Yes, on security updates
 
|-
 
|-
Line 270: Line 297:
 
|}
 
|}
  
== Bootloader stage 1 ==
+
== Secure Monitor Init ==
It is currently unknown what key generation the stage 2 bootloader does.
+
On all versions, the key to decrypt [[Package2]] is generated by decrypting a constant seed with the master key. The key is erased after use. 
 +
 
 +
Additionally, starting from 4.0.0, the Secure Monitor init will decrypt another constant seed successively with a special per console key and a special static key passed by package1loader, to generate a new per-console key. The operation will erase these special keys passed by package1loader.  
  
 
== Secure Monitor ==
 
== Secure Monitor ==
 
The secure monitor performs some runtime cryptographic operations. See [[SMC]] for what operations it provides.
 
The secure monitor performs some runtime cryptographic operations. See [[SMC]] for what operations it provides.

Revision as of 14:10, 23 January 2018

BootROM

The bootrom initializes two keyslots in the hardware engine:

  • the SBK (Secure Boot Key) in keyslot 14
  • the SSK (Secure Storage Key) in keyslot 15.

Reads from both of these keyslots are disabled by the bootROM. The SBK is stored in FUSE_PRIVATE_KEY, which are locked to read out only FFs after the bootrom finishes.

SBK is unique per console, and not shared among consoles as originally believed.

The SSK is derived on boot via the SBK, the 32-bit console-unique "Device Key", and hardware information stored in fuses.

Pseudocode for the derivation is as follows:

 void generateSSK() {
     char keyBuffer[0x10]; // Used to store keydata
     uint hwInfoBuffer[4]; // Used to store info about hardware from fuses
     uint deviceKey = getDeviceKey(); // Reads 32-bit device key from FUSE_PRIVATE_KEY4.
     for (int i = 0; i < 4; i++) { // Keybuffer = deviceKey || deviceKey || deviceKey || deviceKey
         ((uint *)keyBuffer)[i] = deviceKey;
     }
     
     encryptWithSBK(keyBuffer); // keyBuffer = AES-ECB(SBK, deviceKey || {...})
     
     // Set up Hardware info buffer
     uint vendor_code = *((uint *)0x7000FA00) & 0x0000000F; // FUSE_VENDOR_CODE
     uint fab_code    = *((uint *)0x7000FA04) & 0x0000003F; // FUSE_FAB_CODE
     uint lot_code_0  = *((uint *)0x7000FA08) & 0xFFFFFFFF; // FUSE_LOT_CODE_0
     uint lot_code_1  = *((uint *)0x7000FA0C) & 0x0FFFFFFF; // FUSE_LOT_CODE_1
     uint wafer_id    = *((uint *)0x7000FA10) & 0x0000003F; // FUSE_WAFER_ID
     uint x_coord     = *((uint *)0x7000FA14) & 0x000001FF; // FUSE_X_COORDINATE
     uint y_coord     = *((uint *)0x7000FA18) & 0x000001FF; // FUSE_Y_COORDINATE
     uint unk_hw_fuse = *((uint *)0x7000FA20) & 0x0000003F; // Unknown cached fuse.
     
     // HARDWARE_INFO_BUFFER = unk_hw_fuse || Y_COORD || X_COORD || WAFER_ID || LOT_CODE || FAB_CODE || VENDOR_ID
     hwInfoBuffer[0] = (lot_code_1 << 30) | (wafer_id << 24) | (x_coord << 15) | (y_coord << 6) | unk_hw_fuse;
     hwInfoBuffer[1] = (lot_code_0 << 26) | (lot_code_1 >> 2);
     hwInfoBuffer[2] = (fab_code << 26) | (lot_code_0 >> 6);
     hwInfoBuffer[3] = vendor_code;
     
     for (int i = 0; i < 0x10; i++) { // keyBuffer = XOR(AES-ECB(SBK, deviceKey || {...}), HARDWARE_INFO_BUFFER)
         keyBuffer[i] ^= ((char *)hwInfoBuffer)[i];
     }
     
     encryptWithSBK(keyBuffer); // keyBuffer = AES-ECB(SBK, XOR(AES-ECB(SBK, deviceKey || {...}), HARDWARE_INFO_BUFFER))
     
     setKeyslot(KEYSLOT_SSK, keyBuffer); // SSK = keyBuffer.
 }

Falcon coprocessor

The falcon processor (TSEC) generates a special console-unique key (that will be referred to as the "tsec key").

This is presumably using data stored in fuses that only microcode authenticated by NVidia has access to.

Package1

Key table during package1

Keyslot Name Set by Per-console Per-firmware
11 Package1Key Package1 No Yes
14 SecureBootKey Bootrom No No
15 SecureStorageKey Bootrom Yes No

[1.0.0-3.0.2] Key table after package1

Keyslot Name Set by Per-console Per-firmware
12 MasterKey Package1 No Yes, on security updates
13 PerConsoleKey Package1 Yes No

[4.0.0]+ Key table after package1 (Secure Monitor boot)

Keyslot Name Set by Per-console Per-firmware
12 MasterKey Package1 No Yes, on security updates
13 PerConsoleKeyForNewPerConsoleKeyGen Package1 Yes No
14 StaticKeyForNewPerConsoleKeyGen Package1 No Yes, on security updates
15 PerConsoleKey Package1 Yes No

[4.0.0]+ Key table after package1 (Secure Monitor runtime)

Keyslot Name Set by Per-console Per-firmware
12 MasterKey Package1 No Yes, on security updates
13 NewPerConsoleKey Secure Monitor init Yes Yes, on security updates
15 PerConsoleKey Package1 Yes No


Key generation

Note: aes_unwrap(wrapped_key, wrap_key) is just another name for a single AES-128 block decryption.

If bit0 of 0x7000FB94 is clear, it will initialize keys like this (probably used for internal development units only):

 // Final keys:
 package1_key    /* slot11 */ = aes_unwrap(f5b1eadb.., sbk)
 master_key      /* slot12 */ = aes_unwrap(bct->pubkey[0] == 0x11 ? simpleseed_dev0 : simpleseed_dev1, aes_unwrap(5ff9c2d9.., sbk))
 per_console_key /* slot13 */ = aes_unwrap(4f025f0e..., aes_unwrap(6e4a9592.., ssk))

[4.0.0+] Above method was removed.

Normal key generation looks like this on 1.0.0/2.0.0:

 keyblob_key /* slot13 */ = aes_unwrap(aes_unwrap(wrapped_keyblob_key, tsec_key /* slot13 */), sbk /* slot14 */)
 cmac_key    /* slot11 */ = aes_unwrap(59c7fb6f.., keyblob_key)
 
 if aes_cmac(buf=keyblob+0x10, len=0xA0, cmac_key) != keyblob[0:0x10]:
   panic()
 
 aes_ctr_decrypt(buf=keyblob+0x20, len=0x90, iv=keyblob+0x10 key=keyblob_key)
 
 // Final keys:
 package1_key    /* slot11 */ = keyblob[0x80:0x90]
 master_key      /* slot12 */ = aes_unwrap(bct->pubkey[0] == 0x4f ? normalseed_dev : normalseed_retail, keyblob+0x20)
 per_console_key /* slot13 */ = aes_unwrap(4f025f0e.., keyblob_key)

.. and on 3.0.0, they moved keyslots around a little to generate the same per-console key as 1.0.0:

 old_keyblob_key /* slot10 */ = aes_unwrap(aes_unwrap(df206f59.., tsec_key /* slot13 */), sbk /* slot14 */)
 keyblob_key     /* slot13 */ = aes_unwrap(aes_unwrap(wrapped_keyblob_key, tsec_key /* slot13 */), sbk /* slot14 */)
 cmac_key        /* slot11 */ = aes_unwrap(59c7fb6f.., keyblob_key)
 
 if aes_cmac(buf=keyblob+0x10, len=0xA0, cmac_key) != keyblob[0:0x10]:
   panic()
 
 aes_ctr_decrypt(buf=keyblob+0x20, len=0x90, iv=keyblob+0x10 key=keyblob_key)
 
 // Final keys:
 package1_key    /* slot11 */ = keyblob[0x80:0x90]
 master_key      /* slot12 */ = aes_unwrap(bct->pubkey[0] == 0x4f ? normalseed_dev : normalseed_retail, keyblob+0x20)
 per_console_key /* slot13 */ = aes_unwrap(4f025f0e.., old_keyblob_key)

.. and on 4.0.0 it was further moved around:

 old_keyblob_key /* slot15 */ = aes_unwrap(aes_unwrap(df206f59.., tsec_key /* slot13 */), sbk /* slot14 */)
 keyblob_key     /* slot13 */ = aes_unwrap(aes_unwrap(wrapped_keyblob_key, tsec_key /* slot13 */), sbk /* slot14 */)
 cmac_key        /* slot11 */ = aes_unwrap(59c7fb6f.., keyblob_key)
 
 if aes_cmac(buf=keyblob+0x10, len=0xA0, cmac_key) != keyblob[0:0x10]:
   panic()
 
 aes_ctr_decrypt(buf=keyblob+0x20, len=0x90, iv=keyblob+0x10 key=keyblob_key)
 
 // Final keys:
 package1_key        /* slot11 */ = keyblob[0x80:0x90]
 master_key          /* slot12 */ = aes_unwrap(normalseed_retail, keyblob+0x20)
 new_master_key      /* slot14 */ = aes_unwrap(2dc1f48d.., keyblob+0x20)
 new_per_console_key /* slot13 */ = aes_unwrap(0c9109db.., old_keyblob_key)
 per_console_key     /* slot15 */ = aes_unwrap(4f025f0e.., old_keyblob_key)

SBK and SSK keyslots are cleared after keys have been generated.

See table above for which keys are console unique.

The key used to verify a keyblob's MAC is not the keyblob key but a key derived from it; this is likely part of an attempt to mitigate side-channel attacks as the MAC is an alterable part of the keyblob.

The bootloader only stores the hardcoded constants for the keyblob used in the current revision. Nintendo are withholding all the future hardcoded constants.

This means that if you have an attack on the bootloader, you need to re-preform it every time they move to a new keyblob.

Dumping the SBK and TSEC key of any single system should be enough to derive all key material on the system.

The key-derivation is described in more detail here.

Keyblob

There are 32 keyblobs written to NAND at factory, with each keyblob encrypted with a console-unique key derived from the console's SBK, the console's tsec key, and a constant specific to each keyblob.

Despite being encrypted with console unique keys, though, the decrypted keyblob contents are shared for all consoles.

Seeds

 normalseed_retail = d8a2410a...
 
 [1.0.0] wrapped_keyblob_key = df206f59...
 [1.0.0] simpleseed_dev0   = aff11423...
 [1.0.0] simpleseed_dev1   = 5e177ee1...
 [1.0.0] normalseed_dev    = 0542a0fd...
 
 [3.0.0] wrapped_keyblob_key = 0c25615d...  
 [3.0.0] simpleseed_dev0   = de00216a...
 [3.0.0] simpleseed_dev1   = 2db7c0a1...
 [3.0.0] normalseed_dev    = 678c5a03...
 
 [3.0.1] wrapped_keyblob_key = 337685ee...  
 [3.0.1] simpleseed_dev0   = e045f5ba...
 [3.0.1] simpleseed_dev1   = 84d92e0d...
 [3.0.1] normalseed_dev    = cd88155b...
 
 [4.0.0] wrapped_keyblob_key = 2d1f4880...

Table of used keyblobs

System version Used keyblob Used master static key encryption key in keyblob
1.0.0-2.3.0 1 1
3.0.0 2 1
3.0.1-3.0.2 3 1
4.0.0 4 1

Secure Monitor Init

On all versions, the key to decrypt Package2 is generated by decrypting a constant seed with the master key. The key is erased after use.

Additionally, starting from 4.0.0, the Secure Monitor init will decrypt another constant seed successively with a special per console key and a special static key passed by package1loader, to generate a new per-console key. The operation will erase these special keys passed by package1loader.

Secure Monitor

The secure monitor performs some runtime cryptographic operations. See SMC for what operations it provides.